Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
An existence theorem for non-homogeneous differential inclusions in Sobolev spaces. / Mandallena, Jean Philippe; Sychev, Mikhail.
в: Advances in Calculus of Variations, Том 14, № 3, 01.07.2021, стр. 313-326.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - An existence theorem for non-homogeneous differential inclusions in Sobolev spaces
AU - Mandallena, Jean Philippe
AU - Sychev, Mikhail
N1 - Publisher Copyright: © 2021 Walter de Gruyter GmbH, Berlin/Boston .
PY - 2021/7/1
Y1 - 2021/7/1
N2 - In the present paper, we establish an existence theorem for non-homogeneous differential inclusions in Sobolev spaces. This theorem extends the results of Müller and Sychev [S. Müller and M. A. Sychev, Optimal existence theorems for nonhomogeneous differential inclusions, J. Funct. Anal. 181 2001, 2, 447-475; M. A. Sychev, Comparing various methods of resolving differential inclusions, J. Convex Anal. 18 2011, 4, 1025-1045] obtained in the setting of Lipschitz functions. We also show that solutions can be selected with the property of higher regularity.
AB - In the present paper, we establish an existence theorem for non-homogeneous differential inclusions in Sobolev spaces. This theorem extends the results of Müller and Sychev [S. Müller and M. A. Sychev, Optimal existence theorems for nonhomogeneous differential inclusions, J. Funct. Anal. 181 2001, 2, 447-475; M. A. Sychev, Comparing various methods of resolving differential inclusions, J. Convex Anal. 18 2011, 4, 1025-1045] obtained in the setting of Lipschitz functions. We also show that solutions can be selected with the property of higher regularity.
KW - Baire category
KW - convex integration
KW - higher regularity
KW - ind functional
KW - Non-homogeneous differential inclusions
KW - sequences obtained by perturbation
UR - http://www.scopus.com/inward/record.url?scp=85069790597&partnerID=8YFLogxK
U2 - 10.1515/acv-2018-0076
DO - 10.1515/acv-2018-0076
M3 - Article
AN - SCOPUS:85069790597
VL - 14
SP - 313
EP - 326
JO - Advances in Calculus of Variations
JF - Advances in Calculus of Variations
SN - 1864-8258
IS - 3
ER -
ID: 21046802