Standard

About the whole behavior of trajectories of Darboux systems with cubic nonlinearities. / Volokitin, Evgenii Pavlovich; Cheresiz, Vladimir Mikhaiĭlovich.

в: Сибирские электронные математические известия, Том 15, 01.01.2018, стр. 1463-1484.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Volokitin, EP & Cheresiz, VM 2018, 'About the whole behavior of trajectories of Darboux systems with cubic nonlinearities', Сибирские электронные математические известия, Том. 15, стр. 1463-1484. https://doi.org/10.33048/semi.2018.15.120

APA

Volokitin, E. P., & Cheresiz, V. M. (2018). About the whole behavior of trajectories of Darboux systems with cubic nonlinearities. Сибирские электронные математические известия, 15, 1463-1484. https://doi.org/10.33048/semi.2018.15.120

Vancouver

Volokitin EP, Cheresiz VM. About the whole behavior of trajectories of Darboux systems with cubic nonlinearities. Сибирские электронные математические известия. 2018 янв. 1;15:1463-1484. doi: 10.33048/semi.2018.15.120

Author

Volokitin, Evgenii Pavlovich ; Cheresiz, Vladimir Mikhaiĭlovich. / About the whole behavior of trajectories of Darboux systems with cubic nonlinearities. в: Сибирские электронные математические известия. 2018 ; Том 15. стр. 1463-1484.

BibTeX

@article{b9a4796fc7e94cd09e928eec58a8b840,
title = "About the whole behavior of trajectories of Darboux systems with cubic nonlinearities",
abstract = "We study the local and global behavior of trajectories of the differential systems of the form x˙ = x + P3(x, y); y˙ = y + Q3(x, y) where P3(x, y) and Q3(x, y) are homogeneous cubic polynomials with a common factor.",
keywords = "Phase portraits, Poincar{\'e} equator, Polynomial systems, Singular points, polynomial systems, singular points, Poincare equator, phase portraits",
author = "Volokitin, {Evgenii Pavlovich} and Cheresiz, {Vladimir Mikhaiĭlovich}",
year = "2018",
month = jan,
day = "1",
doi = "10.33048/semi.2018.15.120",
language = "English",
volume = "15",
pages = "1463--1484",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - About the whole behavior of trajectories of Darboux systems with cubic nonlinearities

AU - Volokitin, Evgenii Pavlovich

AU - Cheresiz, Vladimir Mikhaiĭlovich

PY - 2018/1/1

Y1 - 2018/1/1

N2 - We study the local and global behavior of trajectories of the differential systems of the form x˙ = x + P3(x, y); y˙ = y + Q3(x, y) where P3(x, y) and Q3(x, y) are homogeneous cubic polynomials with a common factor.

AB - We study the local and global behavior of trajectories of the differential systems of the form x˙ = x + P3(x, y); y˙ = y + Q3(x, y) where P3(x, y) and Q3(x, y) are homogeneous cubic polynomials with a common factor.

KW - Phase portraits

KW - Poincaré equator

KW - Polynomial systems

KW - Singular points

KW - polynomial systems

KW - singular points

KW - Poincare equator

KW - phase portraits

UR - http://www.scopus.com/inward/record.url?scp=85066062605&partnerID=8YFLogxK

U2 - 10.33048/semi.2018.15.120

DO - 10.33048/semi.2018.15.120

M3 - Article

AN - SCOPUS:85066062605

VL - 15

SP - 1463

EP - 1484

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 20158631