Результаты исследований: Материалы конференций › материалы › Рецензирование
A first-order hyperbolic system of governing equations for miscible and viscous compressible fluids. / Groom, M.; Thornber, B.; Romenski, E.
2018. Работа представлена на 10th International Conference on Computational Fluid Dynamics, ICCFD 2018, Barcelona, Испания.Результаты исследований: Материалы конференций › материалы › Рецензирование
}
TY - CONF
T1 - A first-order hyperbolic system of governing equations for miscible and viscous compressible fluids
AU - Groom, M.
AU - Thornber, B.
AU - Romenski, E.
N1 - Publisher Copyright: © ICCFD 2018.
PY - 2018
Y1 - 2018
N2 - In this paper we introduce a reformulation of the compressible multicomponent Navier-Stokes equations that govern the behaviour of mixtures of miscible gases. The resulting equation set is a first-order hyperbolic system containing stiff source terms, which recovers the conventional parabolic theory of viscosity, conduction and diffusion as a first-order approximation in the relaxation limit. An important advantage of this approach versus other first-order reformulations of the Navier-Stokes equations is that the wave speeds remain finite as some relaxation parameter tends to zero. The complete system of equations is presented in one-dimension for binary mixtures of viscous, heat conducting gases.
AB - In this paper we introduce a reformulation of the compressible multicomponent Navier-Stokes equations that govern the behaviour of mixtures of miscible gases. The resulting equation set is a first-order hyperbolic system containing stiff source terms, which recovers the conventional parabolic theory of viscosity, conduction and diffusion as a first-order approximation in the relaxation limit. An important advantage of this approach versus other first-order reformulations of the Navier-Stokes equations is that the wave speeds remain finite as some relaxation parameter tends to zero. The complete system of equations is presented in one-dimension for binary mixtures of viscous, heat conducting gases.
KW - Diffuse Interface
KW - Governing Equations
KW - Multispecies
UR - http://www.scopus.com/inward/record.url?scp=85090827269&partnerID=8YFLogxK
M3 - Paper
AN - SCOPUS:85090827269
T2 - 10th International Conference on Computational Fluid Dynamics, ICCFD 2018
Y2 - 9 July 2018 through 13 July 2018
ER -
ID: 41012842