Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution. / The CMS collaboration.
в: Computing and Software for Big Science, Том 4, № 1, 10, 12.2020.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution
AU - The CMS collaboration
AU - Sirunyan, A. M.
AU - Tumasyan, A.
AU - Adam, W.
AU - Ambrogi, F.
AU - Bergauer, T.
AU - Dragicevic, M.
AU - Erö, J.
AU - Valle, A. Escalante Del
AU - Flechl, M.
AU - Frühwirth, R.
AU - Jeitler, M.
AU - Krammer, N.
AU - Krätschmer, I.
AU - Liko, D.
AU - Madlener, T.
AU - Mikulec, I.
AU - Rad, N.
AU - Schieck, J.
AU - Schöfbeck, R.
AU - Spanring, M.
AU - Spitzbart, D.
AU - Waltenberger, W.
AU - Wulz, C. E.
AU - Zarucki, M.
AU - Drugakov, V.
AU - Mossolov, V.
AU - Gonzalez, J. Suarez
AU - Darwish, M. R.
AU - De Wolf, E. A.
AU - Croce, D. Di
AU - Janssen, X.
AU - Lelek, A.
AU - Pieters, M.
AU - Sfar, H. Rejeb
AU - Haevermaet, H. Van
AU - Mechelen, P. Van
AU - Putte, S. Van
AU - Remortel, N. Van
AU - Blekman, F.
AU - Bols, E. S.
AU - Chhibra, S. S.
AU - D’Hondt, J.
AU - De Clercq, J.
AU - Lontkovskyi, D.
AU - Lowette, S.
AU - Barnyakov, A.
AU - Blinov, V.
AU - Dimova, T.
AU - Kardapoltsev, L.
AU - Skovpen, Y.
N1 - Publisher Copyright: © 2020, The Author(s).
PY - 2020/12
Y1 - 2020/12
N2 - We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of s=13TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb-1. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯.
AB - We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of s=13TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb-1. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯.
KW - b jets
KW - CMS
KW - Deep learning
KW - Higgs boson
KW - Jet energy
KW - Jet resolution
UR - http://www.scopus.com/inward/record.url?scp=85097776096&partnerID=8YFLogxK
U2 - 10.1007/s41781-020-00041-z
DO - 10.1007/s41781-020-00041-z
M3 - Article
C2 - 33196702
AN - SCOPUS:85097776096
VL - 4
JO - Computing and Software for Big Science
JF - Computing and Software for Big Science
SN - 2510-2044
IS - 1
M1 - 10
ER -
ID: 34175661