Standard

A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution. / The CMS collaboration.

в: Computing and Software for Big Science, Том 4, № 1, 10, 12.2020.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

The CMS collaboration 2020, 'A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution', Computing and Software for Big Science, Том. 4, № 1, 10. https://doi.org/10.1007/s41781-020-00041-z

APA

The CMS collaboration (2020). A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution. Computing and Software for Big Science, 4(1), [10]. https://doi.org/10.1007/s41781-020-00041-z

Vancouver

The CMS collaboration. A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution. Computing and Software for Big Science. 2020 дек.;4(1):10. doi: 10.1007/s41781-020-00041-z

Author

The CMS collaboration. / A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution. в: Computing and Software for Big Science. 2020 ; Том 4, № 1.

BibTeX

@article{35daba02428645ee8e498f7ce7f86db2,
title = "A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution",
abstract = "We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of s=13TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb-1. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯.",
keywords = "b jets, CMS, Deep learning, Higgs boson, Jet energy, Jet resolution",
author = "{The CMS collaboration} and Sirunyan, {A. M.} and A. Tumasyan and W. Adam and F. Ambrogi and T. Bergauer and M. Dragicevic and J. Er{\"o} and Valle, {A. Escalante Del} and M. Flechl and R. Fr{\"u}hwirth and M. Jeitler and N. Krammer and I. Kr{\"a}tschmer and D. Liko and T. Madlener and I. Mikulec and N. Rad and J. Schieck and R. Sch{\"o}fbeck and M. Spanring and D. Spitzbart and W. Waltenberger and Wulz, {C. E.} and M. Zarucki and V. Drugakov and V. Mossolov and Gonzalez, {J. Suarez} and Darwish, {M. R.} and {De Wolf}, {E. A.} and Croce, {D. Di} and X. Janssen and A. Lelek and M. Pieters and Sfar, {H. Rejeb} and Haevermaet, {H. Van} and Mechelen, {P. Van} and Putte, {S. Van} and Remortel, {N. Van} and F. Blekman and Bols, {E. S.} and Chhibra, {S. S.} and J. D{\textquoteright}Hondt and {De Clercq}, J. and D. Lontkovskyi and S. Lowette and A. Barnyakov and V. Blinov and T. Dimova and L. Kardapoltsev and Y. Skovpen",
note = "Publisher Copyright: {\textcopyright} 2020, The Author(s).",
year = "2020",
month = dec,
doi = "10.1007/s41781-020-00041-z",
language = "English",
volume = "4",
journal = "Computing and Software for Big Science",
issn = "2510-2044",
publisher = "Springer Nature",
number = "1",

}

RIS

TY - JOUR

T1 - A Deep Neural Network for Simultaneous Estimation of b Jet Energy and Resolution

AU - The CMS collaboration

AU - Sirunyan, A. M.

AU - Tumasyan, A.

AU - Adam, W.

AU - Ambrogi, F.

AU - Bergauer, T.

AU - Dragicevic, M.

AU - Erö, J.

AU - Valle, A. Escalante Del

AU - Flechl, M.

AU - Frühwirth, R.

AU - Jeitler, M.

AU - Krammer, N.

AU - Krätschmer, I.

AU - Liko, D.

AU - Madlener, T.

AU - Mikulec, I.

AU - Rad, N.

AU - Schieck, J.

AU - Schöfbeck, R.

AU - Spanring, M.

AU - Spitzbart, D.

AU - Waltenberger, W.

AU - Wulz, C. E.

AU - Zarucki, M.

AU - Drugakov, V.

AU - Mossolov, V.

AU - Gonzalez, J. Suarez

AU - Darwish, M. R.

AU - De Wolf, E. A.

AU - Croce, D. Di

AU - Janssen, X.

AU - Lelek, A.

AU - Pieters, M.

AU - Sfar, H. Rejeb

AU - Haevermaet, H. Van

AU - Mechelen, P. Van

AU - Putte, S. Van

AU - Remortel, N. Van

AU - Blekman, F.

AU - Bols, E. S.

AU - Chhibra, S. S.

AU - D’Hondt, J.

AU - De Clercq, J.

AU - Lontkovskyi, D.

AU - Lowette, S.

AU - Barnyakov, A.

AU - Blinov, V.

AU - Dimova, T.

AU - Kardapoltsev, L.

AU - Skovpen, Y.

N1 - Publisher Copyright: © 2020, The Author(s).

PY - 2020/12

Y1 - 2020/12

N2 - We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of s=13TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb-1. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯.

AB - We describe a method to obtain point and dispersion estimates for the energies of jets arising from b quarks produced in proton–proton collisions at an energy of s=13TeV at the CERN LHC. The algorithm is trained on a large sample of simulated b jets and validated on data recorded by the CMS detector in 2017 corresponding to an integrated luminosity of 41 fb-1. A multivariate regression algorithm based on a deep feed-forward neural network employs jet composition and shape information, and the properties of reconstructed secondary vertices associated with the jet. The results of the algorithm are used to improve the sensitivity of analyses that make use of b jets in the final state, such as the observation of Higgs boson decay to b b ¯.

KW - b jets

KW - CMS

KW - Deep learning

KW - Higgs boson

KW - Jet energy

KW - Jet resolution

UR - http://www.scopus.com/inward/record.url?scp=85097776096&partnerID=8YFLogxK

U2 - 10.1007/s41781-020-00041-z

DO - 10.1007/s41781-020-00041-z

M3 - Article

C2 - 33196702

AN - SCOPUS:85097776096

VL - 4

JO - Computing and Software for Big Science

JF - Computing and Software for Big Science

SN - 2510-2044

IS - 1

M1 - 10

ER -

ID: 34175661