Standard

A characterizing property of CP-groups. / Buturlakin, A. A.; Shen, R.; Shi, W.

в: Siberian Mathematical Journal, Том 58, № 3, 01.05.2017, стр. 405-407.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Buturlakin, AA, Shen, R & Shi, W 2017, 'A characterizing property of CP-groups', Siberian Mathematical Journal, Том. 58, № 3, стр. 405-407. https://doi.org/10.1134/S0037446617030041

APA

Buturlakin, A. A., Shen, R., & Shi, W. (2017). A characterizing property of CP-groups. Siberian Mathematical Journal, 58(3), 405-407. https://doi.org/10.1134/S0037446617030041

Vancouver

Buturlakin AA, Shen R, Shi W. A characterizing property of CP-groups. Siberian Mathematical Journal. 2017 май 1;58(3):405-407. doi: 10.1134/S0037446617030041

Author

Buturlakin, A. A. ; Shen, R. ; Shi, W. / A characterizing property of CP-groups. в: Siberian Mathematical Journal. 2017 ; Том 58, № 3. стр. 405-407.

BibTeX

@article{6a3c1d1e70d344ffb5fbdf62b805b0ab,
title = "A characterizing property of CP-groups",
abstract = "Let G be a finite group. It is proved that if, for every prime p, the number of nonidentity p-elements of G is divisible by the p′-part of |G|, then all element orders of G are prime powers.",
keywords = "CP-groups, elements of prime power order, finite groups",
author = "Buturlakin, {A. A.} and R. Shen and W. Shi",
year = "2017",
month = may,
day = "1",
doi = "10.1134/S0037446617030041",
language = "English",
volume = "58",
pages = "405--407",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "3",

}

RIS

TY - JOUR

T1 - A characterizing property of CP-groups

AU - Buturlakin, A. A.

AU - Shen, R.

AU - Shi, W.

PY - 2017/5/1

Y1 - 2017/5/1

N2 - Let G be a finite group. It is proved that if, for every prime p, the number of nonidentity p-elements of G is divisible by the p′-part of |G|, then all element orders of G are prime powers.

AB - Let G be a finite group. It is proved that if, for every prime p, the number of nonidentity p-elements of G is divisible by the p′-part of |G|, then all element orders of G are prime powers.

KW - CP-groups

KW - elements of prime power order

KW - finite groups

UR - http://www.scopus.com/inward/record.url?scp=85021307717&partnerID=8YFLogxK

U2 - 10.1134/S0037446617030041

DO - 10.1134/S0037446617030041

M3 - Article

AN - SCOPUS:85021307717

VL - 58

SP - 405

EP - 407

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 3

ER -

ID: 8975110