Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
О числе Лосика - Черна слоений коразмерности 2. / Ефременко, Юрий Даниилович.
в: Сибирский математический журнал, Том 66, № 5 (393), 2025, стр. 838-853.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - О числе Лосика - Черна слоений коразмерности 2
AU - Ефременко, Юрий Даниилович
N1 - Ефременко, Ю. Д. О числе Лосика - Черна слоений коразмерности 2 / Ю. Д. Ефременко // Сибирский математический журнал. – 2025. – Т. 66, № 5(393). – С. 838-853. – DOI 10.33048/smzh.2025.66.506. – EDN SYYHPY. Работа выполнена при поддержке Математического центра в Академгородке, соглашение с Министерством науки и высшего образования Российской Федерации № 075-15-2025-349.
PY - 2025
Y1 - 2025
N2 - Рассматривается первый класс Лосика - Черна (CL-класс) слоений коразмерности 2 на расслоениях над окружностью со структурной группой, являющейся циклической подгруппой специальной линейной группы над полем комплексных чисел. Вводится понятие числа Лосика - Черна для слоений, имеющих по крайней мере два гиперболических слоя. Показано, что для матриц, сопряженных диагональным с различными элементами на диагонали, не равными по модулю единице, класс Лосика - Черна соответствующего слоения нетривиален. При этом значение числа Лосика однозначно определяется диагональными элементами. Для матриц, сопряженных диагональным с различными, но равными по модулю единице, элементами на диагонали класс Лосика - Черна тривиален. Для матриц, сопряженных единичной, CL-класс тривиален, а для матриц, сопряженных жордановой клетке, нетривиален.
AB - Рассматривается первый класс Лосика - Черна (CL-класс) слоений коразмерности 2 на расслоениях над окружностью со структурной группой, являющейся циклической подгруппой специальной линейной группы над полем комплексных чисел. Вводится понятие числа Лосика - Черна для слоений, имеющих по крайней мере два гиперболических слоя. Показано, что для матриц, сопряженных диагональным с различными элементами на диагонали, не равными по модулю единице, класс Лосика - Черна соответствующего слоения нетривиален. При этом значение числа Лосика однозначно определяется диагональными элементами. Для матриц, сопряженных диагональным с различными, но равными по модулю единице, элементами на диагонали класс Лосика - Черна тривиален. Для матриц, сопряженных единичной, CL-класс тривиален, а для матриц, сопряженных жордановой клетке, нетривиален.
KW - СЛОЕНИЕ, ПРОСТРАНСТВО СЛОЕВ
KW - ХАРАКТЕРИСТИЧЕСКИЕ КЛАССЫ СЛОЕНИЙ
KW - КОГОМОЛОГИИ ГЕЛЬФАНДА - ФУКСА
KW - КЛАСС ЛОСИКА - ЧЕРНА
KW - ДИНАМИЧЕСКИЕ СИСТЕМЫ
KW - НЕПОДВИЖНЫЕ ТОЧКИ
UR - https://www.elibrary.ru/item.asp?id=83044498
U2 - 10.33048/smzh.2025.66.506
DO - 10.33048/smzh.2025.66.506
M3 - статья
VL - 66
SP - 838
EP - 853
JO - Сибирский математический журнал
JF - Сибирский математический журнал
SN - 0037-4474
IS - 5 (393)
ER -
ID: 74594733