Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
Конвейер обработки гиперспектральных изображений на примере исследования зерен ячменя, содержащих меланин. / Busov, I. D.; Genaev, M. A.; Komyshev, E. G. и др.
в: Vavilovskii Zhurnal Genetiki i Selektsii, Том 28, № 4, 2024, стр. 443-455.Результаты исследований: Научные публикации в периодических изданиях › статья › Рецензирование
}
TY - JOUR
T1 - Конвейер обработки гиперспектральных изображений на примере исследования зерен ячменя, содержащих меланин
AU - Busov, I. D.
AU - Genaev, M. A.
AU - Komyshev, E. G.
AU - Koval, V. S.
AU - Zykova, T. E.
AU - Glagoleva, A. Y.
AU - Afonnikov, D. A.
N1 - Testing of the pipeline and data processing were performed using computational resources of the CDC \u201CBioinformatics\u201D(supported by budget project No. FWNR-2022-0020). Development of the pipeline structure, algorithms and programs was supported by RSF, project No. 22-74-00122.
PY - 2024
Y1 - 2024
N2 - Анализ гиперспектральных изображений представляет большой интерес при изучении растений. В настоящее время такой анализ используется все более широко, поэтому создание методов обработки гиперспектральных изображений является актуальной задачей. В статье представлен конвейер для работы с гиперспектральными изображениями, который включает: предварительную обработку, базовый статистический анализ, визуализацию многоканального гиперспектрального изображения, а также решение задач классификации и кластеризации с применением методов машинного обучения. В текущей версии пакета программ реализованы следующие методы: построение доверительного интервала произвольного уровня для разницы выборочных средних; проверка сходства распределений интенсивности линий спектра для двух наборов гиперспектральных изображений на основе U-критерия Манна–Уитни и критерия согласия Пирсона; визуализация в двухмерном пространстве с применением методов понижения размерности PCA, ISOMAP и UMAP; классификация с использованием линейной или гребневой регрессии, случайного леса и градиентного бустинга; кластеризация образцов с помощью EM-алгоритма. Программный конвейер реализован на языке Python с использованием библиотек Pandas, NumPy, OpenCV, SciPy, Sklearn, Umap, CatBoost и Plotly. Исходный код доступен по адресу: https://github.com/igor2704/Hyperspectral_images. Данный конвейер был применен для идентификации пигмента меланина в оболочке зерен ячменя на базе гиперспектральных данных. Визуализация на основе методов PCA, UMAP и ISOMAP, а также использование алгоритмов кластеризации показали, что на базе гиперспектральных данных с высокой точностью можно провести линейное разделение образцов зерен с пигментацией и без нее. Анализ выявил статистически значимые различия в распределении медиан интенсивности для выборок изображений зерен с пигментом и без него. Таким образом, продемонстрировано, что с помощью гиперспектральных изображений с большой точностью можно определить наличие или отсутствие меланина в зернах ячменя. Созданный в данной работе гибкий и удобный инструмент позволит существенно повысить эффективность анализа гиперспектральных изображений.
AB - Анализ гиперспектральных изображений представляет большой интерес при изучении растений. В настоящее время такой анализ используется все более широко, поэтому создание методов обработки гиперспектральных изображений является актуальной задачей. В статье представлен конвейер для работы с гиперспектральными изображениями, который включает: предварительную обработку, базовый статистический анализ, визуализацию многоканального гиперспектрального изображения, а также решение задач классификации и кластеризации с применением методов машинного обучения. В текущей версии пакета программ реализованы следующие методы: построение доверительного интервала произвольного уровня для разницы выборочных средних; проверка сходства распределений интенсивности линий спектра для двух наборов гиперспектральных изображений на основе U-критерия Манна–Уитни и критерия согласия Пирсона; визуализация в двухмерном пространстве с применением методов понижения размерности PCA, ISOMAP и UMAP; классификация с использованием линейной или гребневой регрессии, случайного леса и градиентного бустинга; кластеризация образцов с помощью EM-алгоритма. Программный конвейер реализован на языке Python с использованием библиотек Pandas, NumPy, OpenCV, SciPy, Sklearn, Umap, CatBoost и Plotly. Исходный код доступен по адресу: https://github.com/igor2704/Hyperspectral_images. Данный конвейер был применен для идентификации пигмента меланина в оболочке зерен ячменя на базе гиперспектральных данных. Визуализация на основе методов PCA, UMAP и ISOMAP, а также использование алгоритмов кластеризации показали, что на базе гиперспектральных данных с высокой точностью можно провести линейное разделение образцов зерен с пигментацией и без нее. Анализ выявил статистически значимые различия в распределении медиан интенсивности для выборок изображений зерен с пигментом и без него. Таким образом, продемонстрировано, что с помощью гиперспектральных изображений с большой точностью можно определить наличие или отсутствие меланина в зернах ячменя. Созданный в данной работе гибкий и удобный инструмент позволит существенно повысить эффективность анализа гиперспектральных изображений.
KW - barley grains
KW - hyperspectral images
KW - machine learning
KW - pigment composition
KW - statistical analysis
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85199681179&origin=inward&txGid=6c4432e4049e856d503c036e027f253a
UR - https://www.mendeley.com/catalogue/c3b40207-def5-3e86-8a78-246dcbaafd44/
U2 - 10.18699/vjgb-24-50
DO - 10.18699/vjgb-24-50
M3 - статья
C2 - 39040972
VL - 28
SP - 443
EP - 455
JO - Вавиловский журнал генетики и селекции
JF - Вавиловский журнал генетики и селекции
SN - 2500-0462
IS - 4
ER -
ID: 61309660