Standard

Φ-гармонические функции на графах. / Panenko, Roman.

в: Siberian Electronic Mathematical Reports, Том 14, 1, 2017, стр. 1-9.

Результаты исследований: Научные публикации в периодических изданияхстатьяРецензирование

Harvard

Panenko, R 2017, 'Φ-гармонические функции на графах', Siberian Electronic Mathematical Reports, Том. 14, 1, стр. 1-9. https://doi.org/10.17377/semi.2017.14.001

APA

Panenko, R. (2017). Φ-гармонические функции на графах. Siberian Electronic Mathematical Reports, 14, 1-9. [1]. https://doi.org/10.17377/semi.2017.14.001

Vancouver

Panenko R. Φ-гармонические функции на графах. Siberian Electronic Mathematical Reports. 2017;14:1-9. 1. doi: 10.17377/semi.2017.14.001

Author

Panenko, Roman. / Φ-гармонические функции на графах. в: Siberian Electronic Mathematical Reports. 2017 ; Том 14. стр. 1-9.

BibTeX

@article{9b10c0b7beca42fa8cf70ec99bb6dc72,
title = "Φ-гармонические функции на графах",
abstract = "We study certain problems of Φ-harmonic analysis on graphs, where Φ is a strictly convex N-function.We introduce the key definitions and reveal that the ones in question are well-defined and what basic properties of harmonic functions hold. Also we prove discrete analogs of classical theorems for harmonic function in the usual sense: uniqueness theorem, Harnack's inequality, Harnack's principle etc.",
keywords = "Graph, Harnack's inequality, N-function, Φ-harmonicity, Graph, Harnack's inequality, N-function, Φ-harmonicity",
author = "Roman Panenko",
note = "Паненко Р. Φ-гармонические функции на графах // Сибирские электронные математические известия. - 2022. - Т. 14. - С. 1-9.",
year = "2017",
doi = "10.17377/semi.2017.14.001",
language = "русский",
volume = "14",
pages = "1--9",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Φ-гармонические функции на графах

AU - Panenko, Roman

N1 - Паненко Р. Φ-гармонические функции на графах // Сибирские электронные математические известия. - 2022. - Т. 14. - С. 1-9.

PY - 2017

Y1 - 2017

N2 - We study certain problems of Φ-harmonic analysis on graphs, where Φ is a strictly convex N-function.We introduce the key definitions and reveal that the ones in question are well-defined and what basic properties of harmonic functions hold. Also we prove discrete analogs of classical theorems for harmonic function in the usual sense: uniqueness theorem, Harnack's inequality, Harnack's principle etc.

AB - We study certain problems of Φ-harmonic analysis on graphs, where Φ is a strictly convex N-function.We introduce the key definitions and reveal that the ones in question are well-defined and what basic properties of harmonic functions hold. Also we prove discrete analogs of classical theorems for harmonic function in the usual sense: uniqueness theorem, Harnack's inequality, Harnack's principle etc.

KW - Graph

KW - Harnack's inequality

KW - N-function

KW - Φ-harmonicity

KW - Graph

KW - Harnack's inequality

KW - N-function

KW - Φ-harmonicity

UR - http://www.scopus.com/inward/record.url?scp=85074667072&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/3b400ad4-989e-3916-bcfe-14012a7aa431/

U2 - 10.17377/semi.2017.14.001

DO - 10.17377/semi.2017.14.001

M3 - статья

AN - SCOPUS:85074667072

VL - 14

SP - 1

EP - 9

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

M1 - 1

ER -

ID: 41368695