Research output: Contribution to journal › Article › peer-review
Virtual and universal braid groups, their quotients and representations. / Bardakov, Valeriy; Emel'Yanenkov, Ivan; Ivanov, Maxim et al.
In: Journal of Group Theory, Vol. 25, No. 4, 01.07.2022, p. 679-712.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Virtual and universal braid groups, their quotients and representations
AU - Bardakov, Valeriy
AU - Emel'Yanenkov, Ivan
AU - Ivanov, Maxim
AU - Kozlovskaya, Tatyana
AU - Nasybullov, Timur
AU - Vesnin, Andrei
N1 - The results were obtained during the program on knots and braid groups advised by V. Bardakov, T. Nasybullov and A. Vesnin in the frame of The First Workshop of the Mathematical Center in Akademgorodok. Publisher Copyright: © 2022 Walter de Gruyter GmbH, Berlin/Boston.
PY - 2022/7/1
Y1 - 2022/7/1
N2 - In the present paper, we study structural aspects of certain quotients of braid groups and virtual braid groups. In particular, we construct and study linear representations B n → GL n (n - 1) / 2 (Z [ t ± 1 ]) B_{n}\to\mathrm{GL}_{n(n-1)/2}(\mathbb{Z}[t^{\pm 1}]), VB n → GL n (n - 1) / 2 (Z [ t ± 1, t 1 ± 1, t 2 ± 1, ..., t n - 1 ± 1 ]) \mathrm{VB}_{n}\to\mathrm{GL}_{n(n-1)/2}(\mathbb{Z}[t^{\pm 1},t_{1}^{\pm 1},t_{2}^{\pm 1},\ldots,t_{n-1}^{\pm 1}]) which are connected with the famous Lawrence-Bigelow-Krammer representation. It turns out that these representations induce faithful representations of the crystallographic groups B n / P n ′ B_{n}/P_{n}^{\prime}, VB n / VP n ′ \mathrm{VB}_{n}/\mathrm{VP}_{n}^{\prime}, respectively. Using these representations we study certain properties of the groups B n / P n ′ B_{n}/P_{n}^{\prime}, VB n / VP n ′ \mathrm{VB}_{n}/\mathrm{VP}_{n}^{\prime}. Moreover, we construct new representations and decompositions of the universal braid groups UB n \mathrm{UB}_{n}.
AB - In the present paper, we study structural aspects of certain quotients of braid groups and virtual braid groups. In particular, we construct and study linear representations B n → GL n (n - 1) / 2 (Z [ t ± 1 ]) B_{n}\to\mathrm{GL}_{n(n-1)/2}(\mathbb{Z}[t^{\pm 1}]), VB n → GL n (n - 1) / 2 (Z [ t ± 1, t 1 ± 1, t 2 ± 1, ..., t n - 1 ± 1 ]) \mathrm{VB}_{n}\to\mathrm{GL}_{n(n-1)/2}(\mathbb{Z}[t^{\pm 1},t_{1}^{\pm 1},t_{2}^{\pm 1},\ldots,t_{n-1}^{\pm 1}]) which are connected with the famous Lawrence-Bigelow-Krammer representation. It turns out that these representations induce faithful representations of the crystallographic groups B n / P n ′ B_{n}/P_{n}^{\prime}, VB n / VP n ′ \mathrm{VB}_{n}/\mathrm{VP}_{n}^{\prime}, respectively. Using these representations we study certain properties of the groups B n / P n ′ B_{n}/P_{n}^{\prime}, VB n / VP n ′ \mathrm{VB}_{n}/\mathrm{VP}_{n}^{\prime}. Moreover, we construct new representations and decompositions of the universal braid groups UB n \mathrm{UB}_{n}.
UR - http://www.scopus.com/inward/record.url?scp=85126006495&partnerID=8YFLogxK
U2 - 10.1515/jgth-2021-0114
DO - 10.1515/jgth-2021-0114
M3 - Article
AN - SCOPUS:85126006495
VL - 25
SP - 679
EP - 712
JO - Journal of Group Theory
JF - Journal of Group Theory
SN - 1433-5883
IS - 4
ER -
ID: 35664543