Research output: Contribution to journal › Article › peer-review
Universal transparency and asymmetric spin splitting near the Dirac point in HgTe quantum wells. / Dziom, V.; Shuvaev, A.; Gospodarič, J. et al.
In: Physical Review B, Vol. 106, No. 4, 045302, 15.07.2022.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Universal transparency and asymmetric spin splitting near the Dirac point in HgTe quantum wells
AU - Dziom, V.
AU - Shuvaev, A.
AU - Gospodarič, J.
AU - Novik, E. G.
AU - Dobretsova, A. A.
AU - Mikhailov, N. N.
AU - Kvon, Z. D.
AU - Alpichshev, Z.
AU - Pimenov, A.
N1 - Funding Information: This work was supported by the Austrian Science Funds (W 1243, I 3456-N27, I 5539-N). Publisher Copyright: © 2022 authors. Published by the American Physical Society.
PY - 2022/7/15
Y1 - 2022/7/15
N2 - Spin-orbit coupling in thin HgTe quantum wells results in a relativistic-like electron band structure, making it a versatile solid state platform to observe and control nontrivial electrodynamic phenomena. Here we report an observation of universal terahertz (THz) transparency determined by fine-structure constant α≈1/137 in 6.5-nm-thick HgTe layer, close to the critical thickness separating phases with topologically different electronic band structure. Using THz spectroscopy in a magnetic field we obtain direct evidence of asymmetric spin splitting of the Dirac cone. This particle-hole asymmetry facilitates optical control of edge spin currents in the quantum wells.
AB - Spin-orbit coupling in thin HgTe quantum wells results in a relativistic-like electron band structure, making it a versatile solid state platform to observe and control nontrivial electrodynamic phenomena. Here we report an observation of universal terahertz (THz) transparency determined by fine-structure constant α≈1/137 in 6.5-nm-thick HgTe layer, close to the critical thickness separating phases with topologically different electronic band structure. Using THz spectroscopy in a magnetic field we obtain direct evidence of asymmetric spin splitting of the Dirac cone. This particle-hole asymmetry facilitates optical control of edge spin currents in the quantum wells.
UR - http://www.scopus.com/inward/record.url?scp=85134875267&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.106.045302
DO - 10.1103/PhysRevB.106.045302
M3 - Article
AN - SCOPUS:85134875267
VL - 106
JO - Physical Review B
JF - Physical Review B
SN - 2469-9950
IS - 4
M1 - 045302
ER -
ID: 36709549