Research output: Contribution to journal › Article › peer-review
Unexpectedly Large Spin Coherence Effects in the Recombination Fluorescence from Irradiated Highly Polar Solutions on a Nanosecond Time Scale. / Borovkov, Vsevolod I.
In: Journal of Physical Chemistry B, Vol. 121, No. 40, 12.10.2017, p. 9422-9428.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Unexpectedly Large Spin Coherence Effects in the Recombination Fluorescence from Irradiated Highly Polar Solutions on a Nanosecond Time Scale
AU - Borovkov, Vsevolod I.
PY - 2017/10/12
Y1 - 2017/10/12
N2 - Spin correlation effects in the geminate recombination of radical ion pairs in irradiated highly polar liquids are typically believed to be negligible due to a high escape probability for the ions. This report presents the results of an exploratory study of organic polar solvents aimed at the searching for, and estimating the magnitude of, the time-resolved magnetic field effects (TR MFEs) in the delayed radiation-induced fluorescence from diluted solutions of a luminophore. It has been found that upon the high-energy irradiation of the solutions in polar liquids, such as dichloroethane (ε ≈ 10), methanol (ε ≈ 33), acetonitrile (ε ≈ 37), dimethylformamide (ε ≈ 37), dimethyl sulfoxide (ε ≈ 47), ethylene carbonate (ε ≈ 89), substantial spin coherence effects in the delayed fluorescence can be observed within a time range up to ∼100 ns. In most of the cases studied, magnetic resonance characteristics of primary or very early solvent-related radical ions were evaluated from the TR MFE curves. This approach can, therefore, be widely used to complement results obtained by the pulse radiolysis technique with structural and kinetic data extracted from the magnetic resonance characteristics of the short-lived radical ions formed in irradiated media.
AB - Spin correlation effects in the geminate recombination of radical ion pairs in irradiated highly polar liquids are typically believed to be negligible due to a high escape probability for the ions. This report presents the results of an exploratory study of organic polar solvents aimed at the searching for, and estimating the magnitude of, the time-resolved magnetic field effects (TR MFEs) in the delayed radiation-induced fluorescence from diluted solutions of a luminophore. It has been found that upon the high-energy irradiation of the solutions in polar liquids, such as dichloroethane (ε ≈ 10), methanol (ε ≈ 33), acetonitrile (ε ≈ 37), dimethylformamide (ε ≈ 37), dimethyl sulfoxide (ε ≈ 47), ethylene carbonate (ε ≈ 89), substantial spin coherence effects in the delayed fluorescence can be observed within a time range up to ∼100 ns. In most of the cases studied, magnetic resonance characteristics of primary or very early solvent-related radical ions were evaluated from the TR MFE curves. This approach can, therefore, be widely used to complement results obtained by the pulse radiolysis technique with structural and kinetic data extracted from the magnetic resonance characteristics of the short-lived radical ions formed in irradiated media.
KW - LI-ION BATTERIES
KW - RADICAL CATIONS
KW - ELECTRON LOCALIZATION
KW - LIQUID ACETONITRILE
KW - MAGNETIC-FIELDS
KW - RESONANCE
KW - ANIONS
KW - RADIATION
KW - PAIRS
UR - http://www.scopus.com/inward/record.url?scp=85031325898&partnerID=8YFLogxK
U2 - 10.1021/acs.jpcb.7b08813
DO - 10.1021/acs.jpcb.7b08813
M3 - Article
C2 - 28915031
AN - SCOPUS:85031325898
VL - 121
SP - 9422
EP - 9428
JO - Journal of Physical Chemistry B
JF - Journal of Physical Chemistry B
SN - 1520-6106
IS - 40
ER -
ID: 12949258