Research output: Contribution to journal › Article › peer-review
Twofold cantor sets in ℝ. / Kamalutdinov, Kirill; Tetenov, Andrei.
In: Сибирские электронные математические известия, Vol. 15, 01.01.2018, p. 801-814.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Twofold cantor sets in ℝ
AU - Kamalutdinov, Kirill
AU - Tetenov, Andrei
PY - 2018/1/1
Y1 - 2018/1/1
N2 - A symmetric Cantor set Kpq in [0, 1] with double fixed points 0 and 1 and contraction ratios p and q is called twofold Cantor set if it satisfies special exact overlap condition. We prove that all twofold Cantor sets have isomorphic self-similar structures and do not have weak separation property and that for Lebesgue-almost all (p, q) ∈ [0, 1/16]2 the sets Kpq are twofold Cantor sets.
AB - A symmetric Cantor set Kpq in [0, 1] with double fixed points 0 and 1 and contraction ratios p and q is called twofold Cantor set if it satisfies special exact overlap condition. We prove that all twofold Cantor sets have isomorphic self-similar structures and do not have weak separation property and that for Lebesgue-almost all (p, q) ∈ [0, 1/16]2 the sets Kpq are twofold Cantor sets.
KW - Hausdorff dimension
KW - Self-similar set
KW - Twofold Cantor set
KW - Weak separation property
KW - HAUSDORFF DIMENSION
KW - FRACTALS
KW - self-similar set
KW - SELF-SIMILAR SETS
KW - SYSTEMS
KW - weak separation property
KW - twofold Cantor set
UR - http://www.scopus.com/inward/record.url?scp=85074899858&partnerID=8YFLogxK
U2 - 10.17377/semi.2018.15.066
DO - 10.17377/semi.2018.15.066
M3 - Article
AN - SCOPUS:85074899858
VL - 15
SP - 801
EP - 814
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 22473553