Research output: Contribution to journal › Article › peer-review
Transversals, plexes, and multiplexes in iterated quasigroups. / Taranenko, Anna.
In: Electronic Journal of Combinatorics, Vol. 25, No. 4, #P4.30, 02.11.2018.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Transversals, plexes, and multiplexes in iterated quasigroups
AU - Taranenko, Anna
N1 - Publisher Copyright: © The author.
PY - 2018/11/2
Y1 - 2018/11/2
N2 - A d-ary quasigroup of order n is a d-ary operation over a set of cardinality n such that the Cayley table of the operation is a d-dimensional latin hypercube of the same order. Given a binary quasigroup G, the d-iterated quasigroup G[d] is a d-ary quasigroup that is a d-time composition of G with itself. A k-multiplex (a k-plex) K in a d-dimensional latin hypercube Q of order n or in the corresponding d-ary quasigroup is a multiset (a set) of kn entries such that each hyperplane and each symbol of Q is covered by exactly k elements of K. It is common to call 1-plexes transversals. In this paper we prove that there exists a constant c(G, k) such that if a d-iterated quasigroup G of order n has a k-multiplex then((kn)!for)d−1.large d the number of its k-multiplexes is asymptotically equal to (Formula Presented) As a corollary we obtain that if the number of transversals in the Cayley table of a d-iterated quasigroup G of order n is nonzero then asymptotically it is c(G, 1)n!d−1. In addition, we provide limit constants and recurrence formulas for the numbers of transversals in two iterated quasigroups of order 5, characterize a typical k-multiplex and estimate numbers of partial k-multiplexes and transversals in d-iterated quasigroups.
AB - A d-ary quasigroup of order n is a d-ary operation over a set of cardinality n such that the Cayley table of the operation is a d-dimensional latin hypercube of the same order. Given a binary quasigroup G, the d-iterated quasigroup G[d] is a d-ary quasigroup that is a d-time composition of G with itself. A k-multiplex (a k-plex) K in a d-dimensional latin hypercube Q of order n or in the corresponding d-ary quasigroup is a multiset (a set) of kn entries such that each hyperplane and each symbol of Q is covered by exactly k elements of K. It is common to call 1-plexes transversals. In this paper we prove that there exists a constant c(G, k) such that if a d-iterated quasigroup G of order n has a k-multiplex then((kn)!for)d−1.large d the number of its k-multiplexes is asymptotically equal to (Formula Presented) As a corollary we obtain that if the number of transversals in the Cayley table of a d-iterated quasigroup G of order n is nonzero then asymptotically it is c(G, 1)n!d−1. In addition, we provide limit constants and recurrence formulas for the numbers of transversals in two iterated quasigroups of order 5, characterize a typical k-multiplex and estimate numbers of partial k-multiplexes and transversals in d-iterated quasigroups.
UR - http://www.scopus.com/inward/record.url?scp=85056278123&partnerID=8YFLogxK
U2 - 10.37236/7304
DO - 10.37236/7304
M3 - Article
AN - SCOPUS:85056278123
VL - 25
JO - Electronic Journal of Combinatorics
JF - Electronic Journal of Combinatorics
SN - 1077-8926
IS - 4
M1 - #P4.30
ER -
ID: 17411787