Research output: Contribution to journal › Article › peer-review
Topologically Nontrivial Phase-Change Compound GeSb2Te4. / Nurmamat, Munisa; Okamoto, Kazuaki; Zhu, Siyuan et al.
In: ACS Nano, Vol. 14, No. 7, 28.07.2020, p. 9059-9065.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Topologically Nontrivial Phase-Change Compound GeSb2Te4
AU - Nurmamat, Munisa
AU - Okamoto, Kazuaki
AU - Zhu, Siyuan
AU - Menshchikova, Tatiana V.
AU - Rusinov, Igor P.
AU - Korostelev, Vladislav O.
AU - Miyamoto, Koji
AU - Okuda, Taichi
AU - Miyashita, Takeo
AU - Wang, Xiaoxiao
AU - Ishida, Yukiaki
AU - Sumida, Kazuki
AU - Schwier, Eike F.
AU - Ye, Mao
AU - Aliev, Ziya S.
AU - Babanly, Mahammad B.
AU - Amiraslanov, Imamaddin R.
AU - Chulkov, Evgueni V.
AU - Kokh, Konstantin A.
AU - Tereshchenko, Oleg E.
AU - Shimada, Kenya
AU - Shin, Shik
AU - Kimura, Akio
N1 - Publisher Copyright: © 2020 American Chemical Society. All rights reserved. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/7/28
Y1 - 2020/7/28
N2 - Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.
AB - Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.
KW - inertia-free Dirac currents
KW - linearly dispersive bulk band
KW - phase-change materials
KW - pump-probe method
KW - topologically nontrivial phase
UR - http://www.scopus.com/inward/record.url?scp=85089708191&partnerID=8YFLogxK
U2 - 10.1021/acsnano.0c04145
DO - 10.1021/acsnano.0c04145
M3 - Article
C2 - 32628444
AN - SCOPUS:85089708191
VL - 14
SP - 9059
EP - 9065
JO - ACS Nano
JF - ACS Nano
SN - 1936-0851
IS - 7
ER -
ID: 25288566