Standard

Topologically Nontrivial Phase-Change Compound GeSb2Te4. / Nurmamat, Munisa; Okamoto, Kazuaki; Zhu, Siyuan et al.

In: ACS Nano, Vol. 14, No. 7, 28.07.2020, p. 9059-9065.

Research output: Contribution to journalArticlepeer-review

Harvard

Nurmamat, M, Okamoto, K, Zhu, S, Menshchikova, TV, Rusinov, IP, Korostelev, VO, Miyamoto, K, Okuda, T, Miyashita, T, Wang, X, Ishida, Y, Sumida, K, Schwier, EF, Ye, M, Aliev, ZS, Babanly, MB, Amiraslanov, IR, Chulkov, EV, Kokh, KA, Tereshchenko, OE, Shimada, K, Shin, S & Kimura, A 2020, 'Topologically Nontrivial Phase-Change Compound GeSb2Te4', ACS Nano, vol. 14, no. 7, pp. 9059-9065. https://doi.org/10.1021/acsnano.0c04145

APA

Nurmamat, M., Okamoto, K., Zhu, S., Menshchikova, T. V., Rusinov, I. P., Korostelev, V. O., Miyamoto, K., Okuda, T., Miyashita, T., Wang, X., Ishida, Y., Sumida, K., Schwier, E. F., Ye, M., Aliev, Z. S., Babanly, M. B., Amiraslanov, I. R., Chulkov, E. V., Kokh, K. A., ... Kimura, A. (2020). Topologically Nontrivial Phase-Change Compound GeSb2Te4. ACS Nano, 14(7), 9059-9065. https://doi.org/10.1021/acsnano.0c04145

Vancouver

Nurmamat M, Okamoto K, Zhu S, Menshchikova TV, Rusinov IP, Korostelev VO et al. Topologically Nontrivial Phase-Change Compound GeSb2Te4. ACS Nano. 2020 Jul 28;14(7):9059-9065. doi: 10.1021/acsnano.0c04145

Author

Nurmamat, Munisa ; Okamoto, Kazuaki ; Zhu, Siyuan et al. / Topologically Nontrivial Phase-Change Compound GeSb2Te4. In: ACS Nano. 2020 ; Vol. 14, No. 7. pp. 9059-9065.

BibTeX

@article{8db2973d49a943a9bcd29a04e2b96e62,
title = "Topologically Nontrivial Phase-Change Compound GeSb2Te4",
abstract = "Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.",
keywords = "inertia-free Dirac currents, linearly dispersive bulk band, phase-change materials, pump-probe method, topologically nontrivial phase",
author = "Munisa Nurmamat and Kazuaki Okamoto and Siyuan Zhu and Menshchikova, {Tatiana V.} and Rusinov, {Igor P.} and Korostelev, {Vladislav O.} and Koji Miyamoto and Taichi Okuda and Takeo Miyashita and Xiaoxiao Wang and Yukiaki Ishida and Kazuki Sumida and Schwier, {Eike F.} and Mao Ye and Aliev, {Ziya S.} and Babanly, {Mahammad B.} and Amiraslanov, {Imamaddin R.} and Chulkov, {Evgueni V.} and Kokh, {Konstantin A.} and Tereshchenko, {Oleg E.} and Kenya Shimada and Shik Shin and Akio Kimura",
note = "Publisher Copyright: {\textcopyright} 2020 American Chemical Society. All rights reserved. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = jul,
day = "28",
doi = "10.1021/acsnano.0c04145",
language = "English",
volume = "14",
pages = "9059--9065",
journal = "ACS Nano",
issn = "1936-0851",
publisher = "American Chemical Society",
number = "7",

}

RIS

TY - JOUR

T1 - Topologically Nontrivial Phase-Change Compound GeSb2Te4

AU - Nurmamat, Munisa

AU - Okamoto, Kazuaki

AU - Zhu, Siyuan

AU - Menshchikova, Tatiana V.

AU - Rusinov, Igor P.

AU - Korostelev, Vladislav O.

AU - Miyamoto, Koji

AU - Okuda, Taichi

AU - Miyashita, Takeo

AU - Wang, Xiaoxiao

AU - Ishida, Yukiaki

AU - Sumida, Kazuki

AU - Schwier, Eike F.

AU - Ye, Mao

AU - Aliev, Ziya S.

AU - Babanly, Mahammad B.

AU - Amiraslanov, Imamaddin R.

AU - Chulkov, Evgueni V.

AU - Kokh, Konstantin A.

AU - Tereshchenko, Oleg E.

AU - Shimada, Kenya

AU - Shin, Shik

AU - Kimura, Akio

N1 - Publisher Copyright: © 2020 American Chemical Society. All rights reserved. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/7/28

Y1 - 2020/7/28

N2 - Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.

AB - Chalcogenide phase-change materials show strikingly contrasting optical and electrical properties, which has led to their extensive implementation in various memory devices. By performing spin-, time-, and angle-resolved photoemission spectroscopy combined with the first-principles calculation, we report the experimental results that the crystalline phase of GeSb2Te4 is topologically nontrivial in the vicinity of the Dirac semimetal phase. The resulting linearly dispersive bulk Dirac-like bands that cross the Fermi level and are thus responsible for conductivity in the stable crystalline phase of GeSb2Te4 can be viewed as a 3D analogue of graphene. Our finding provides us with the possibility of realizing inertia-free Dirac currents in phase-change materials.

KW - inertia-free Dirac currents

KW - linearly dispersive bulk band

KW - phase-change materials

KW - pump-probe method

KW - topologically nontrivial phase

UR - http://www.scopus.com/inward/record.url?scp=85089708191&partnerID=8YFLogxK

U2 - 10.1021/acsnano.0c04145

DO - 10.1021/acsnano.0c04145

M3 - Article

C2 - 32628444

AN - SCOPUS:85089708191

VL - 14

SP - 9059

EP - 9065

JO - ACS Nano

JF - ACS Nano

SN - 1936-0851

IS - 7

ER -

ID: 25288566