Standard

Thermal expansion of solids : review on theories. / Drebushchak, V. A.

In: Journal of Thermal Analysis and Calorimetry, Vol. 142, No. 2, 01.10.2020, p. 1097-1113.

Research output: Contribution to journalArticlepeer-review

Harvard

Drebushchak, VA 2020, 'Thermal expansion of solids: review on theories', Journal of Thermal Analysis and Calorimetry, vol. 142, no. 2, pp. 1097-1113. https://doi.org/10.1007/s10973-020-09370-y

APA

Drebushchak, V. A. (2020). Thermal expansion of solids: review on theories. Journal of Thermal Analysis and Calorimetry, 142(2), 1097-1113. https://doi.org/10.1007/s10973-020-09370-y

Vancouver

Drebushchak VA. Thermal expansion of solids: review on theories. Journal of Thermal Analysis and Calorimetry. 2020 Oct 1;142(2):1097-1113. Epub 2020 Jan 29. doi: 10.1007/s10973-020-09370-y

Author

Drebushchak, V. A. / Thermal expansion of solids : review on theories. In: Journal of Thermal Analysis and Calorimetry. 2020 ; Vol. 142, No. 2. pp. 1097-1113.

BibTeX

@article{a42bd711df054e429d91bebc081edc37,
title = "Thermal expansion of solids: review on theories",
abstract = "The coefficient of thermal expansion of a solid can be derived from (1) anharmonicity of atomic vibrations; (2) lattice dynamics; (3) equation of state by G. Mie; (4) equation of state by E. Gr{\"u}neisen; and (6) potential of interatomic interaction. Only the last theory in this list provides us with the equation describing correctly all features in the thermal expansion: (1) proportionality between thermal expansion and heat capacity; (2) various values of “plateau” for the coefficient of thermal expansion at temperatures close to Debye temperature; and (3) acceleration of the thermal expansion in the vicinity of melting point.",
keywords = "Anharmonicity, Gruneisen, Heat capacity, Interatomic potential, Thermal expansion, THERMODYNAMIC PROPERTIES, SODIUM, PRESSURE-DEPENDENCE, GRUNEISEN-PARAMETER, EQUATION-OF-STATE, TEMPERATURE, DEGREES-K, ISOTHERMAL COMPRESSIBILITY, LATTICE, HEAT-CAPACITY",
author = "Drebushchak, {V. A.}",
note = "Publisher Copyright: {\textcopyright} 2020, Akad{\'e}miai Kiad{\'o}, Budapest, Hungary. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = oct,
day = "1",
doi = "10.1007/s10973-020-09370-y",
language = "English",
volume = "142",
pages = "1097--1113",
journal = "Journal of Thermal Analysis and Calorimetry",
issn = "1388-6150",
publisher = "Springer Nature",
number = "2",

}

RIS

TY - JOUR

T1 - Thermal expansion of solids

T2 - review on theories

AU - Drebushchak, V. A.

N1 - Publisher Copyright: © 2020, Akadémiai Kiadó, Budapest, Hungary. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/10/1

Y1 - 2020/10/1

N2 - The coefficient of thermal expansion of a solid can be derived from (1) anharmonicity of atomic vibrations; (2) lattice dynamics; (3) equation of state by G. Mie; (4) equation of state by E. Grüneisen; and (6) potential of interatomic interaction. Only the last theory in this list provides us with the equation describing correctly all features in the thermal expansion: (1) proportionality between thermal expansion and heat capacity; (2) various values of “plateau” for the coefficient of thermal expansion at temperatures close to Debye temperature; and (3) acceleration of the thermal expansion in the vicinity of melting point.

AB - The coefficient of thermal expansion of a solid can be derived from (1) anharmonicity of atomic vibrations; (2) lattice dynamics; (3) equation of state by G. Mie; (4) equation of state by E. Grüneisen; and (6) potential of interatomic interaction. Only the last theory in this list provides us with the equation describing correctly all features in the thermal expansion: (1) proportionality between thermal expansion and heat capacity; (2) various values of “plateau” for the coefficient of thermal expansion at temperatures close to Debye temperature; and (3) acceleration of the thermal expansion in the vicinity of melting point.

KW - Anharmonicity

KW - Gruneisen

KW - Heat capacity

KW - Interatomic potential

KW - Thermal expansion

KW - THERMODYNAMIC PROPERTIES

KW - SODIUM

KW - PRESSURE-DEPENDENCE

KW - GRUNEISEN-PARAMETER

KW - EQUATION-OF-STATE

KW - TEMPERATURE

KW - DEGREES-K

KW - ISOTHERMAL COMPRESSIBILITY

KW - LATTICE

KW - HEAT-CAPACITY

UR - http://www.scopus.com/inward/record.url?scp=85078785350&partnerID=8YFLogxK

U2 - 10.1007/s10973-020-09370-y

DO - 10.1007/s10973-020-09370-y

M3 - Article

AN - SCOPUS:85078785350

VL - 142

SP - 1097

EP - 1113

JO - Journal of Thermal Analysis and Calorimetry

JF - Journal of Thermal Analysis and Calorimetry

SN - 1388-6150

IS - 2

ER -

ID: 23327937