Research output: Contribution to journal › Article › peer-review
The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold. / Kordyukov, Yu A.
In: Journal of Mathematical Sciences (United States), Vol. 251, No. 5, 12.2020, p. 696-712.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold
AU - Kordyukov, Yu A.
N1 - Publisher Copyright: © 2020, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.
PY - 2020/12
Y1 - 2020/12
N2 - We consider the renormalized Bochner Laplacian acting on tensor powers of a positive line bundle on a compact symplectic manifold. We derive an explicit local formula for the spectral density function in terms of coefficients of the Riemannian metric and symplectic form.
AB - We consider the renormalized Bochner Laplacian acting on tensor powers of a positive line bundle on a compact symplectic manifold. We derive an explicit local formula for the spectral density function in terms of coefficients of the Riemannian metric and symplectic form.
UR - http://www.scopus.com/inward/record.url?scp=85095987834&partnerID=8YFLogxK
U2 - 10.1007/s10958-020-05123-2
DO - 10.1007/s10958-020-05123-2
M3 - Article
AN - SCOPUS:85095987834
VL - 251
SP - 696
EP - 712
JO - Journal of Mathematical Sciences (United States)
JF - Journal of Mathematical Sciences (United States)
SN - 1072-3374
IS - 5
ER -
ID: 26029565