Standard

The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold. / Kordyukov, Yu A.

In: Journal of Mathematical Sciences (United States), Vol. 251, No. 5, 12.2020, p. 696-712.

Research output: Contribution to journalArticlepeer-review

Harvard

Kordyukov, YA 2020, 'The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold', Journal of Mathematical Sciences (United States), vol. 251, no. 5, pp. 696-712. https://doi.org/10.1007/s10958-020-05123-2

APA

Kordyukov, Y. A. (2020). The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold. Journal of Mathematical Sciences (United States), 251(5), 696-712. https://doi.org/10.1007/s10958-020-05123-2

Vancouver

Kordyukov YA. The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold. Journal of Mathematical Sciences (United States). 2020 Dec;251(5):696-712. doi: 10.1007/s10958-020-05123-2

Author

Kordyukov, Yu A. / The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold. In: Journal of Mathematical Sciences (United States). 2020 ; Vol. 251, No. 5. pp. 696-712.

BibTeX

@article{3199a5fb86484128828756e0d3cafa53,
title = "The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold",
abstract = "We consider the renormalized Bochner Laplacian acting on tensor powers of a positive line bundle on a compact symplectic manifold. We derive an explicit local formula for the spectral density function in terms of coefficients of the Riemannian metric and symplectic form.",
author = "Kordyukov, {Yu A.}",
note = "Publisher Copyright: {\textcopyright} 2020, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = dec,
doi = "10.1007/s10958-020-05123-2",
language = "English",
volume = "251",
pages = "696--712",
journal = "Journal of Mathematical Sciences (United States)",
issn = "1072-3374",
publisher = "Springer Nature",
number = "5",

}

RIS

TY - JOUR

T1 - The Spectral Density Function of the Renormalized Bochner Laplacian on a Symplectic Manifold

AU - Kordyukov, Yu A.

N1 - Publisher Copyright: © 2020, Springer Science+Business Media, LLC, part of Springer Nature. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/12

Y1 - 2020/12

N2 - We consider the renormalized Bochner Laplacian acting on tensor powers of a positive line bundle on a compact symplectic manifold. We derive an explicit local formula for the spectral density function in terms of coefficients of the Riemannian metric and symplectic form.

AB - We consider the renormalized Bochner Laplacian acting on tensor powers of a positive line bundle on a compact symplectic manifold. We derive an explicit local formula for the spectral density function in terms of coefficients of the Riemannian metric and symplectic form.

UR - http://www.scopus.com/inward/record.url?scp=85095987834&partnerID=8YFLogxK

U2 - 10.1007/s10958-020-05123-2

DO - 10.1007/s10958-020-05123-2

M3 - Article

AN - SCOPUS:85095987834

VL - 251

SP - 696

EP - 712

JO - Journal of Mathematical Sciences (United States)

JF - Journal of Mathematical Sciences (United States)

SN - 1072-3374

IS - 5

ER -

ID: 26029565