Standard

The moderate deviations principle for the trajectories of compound renewal processes on the half-line. / Logachov, A.; Mogulskii, A. A.

In: Сибирские электронные математические известия, Vol. 18, No. 2, 48, 2021, p. 1189-1200.

Research output: Contribution to journalArticlepeer-review

Harvard

Logachov, A & Mogulskii, AA 2021, 'The moderate deviations principle for the trajectories of compound renewal processes on the half-line', Сибирские электронные математические известия, vol. 18, no. 2, 48, pp. 1189-1200. https://doi.org/10.33048/SEMI.2021.18.090

APA

Logachov, A., & Mogulskii, A. A. (2021). The moderate deviations principle for the trajectories of compound renewal processes on the half-line. Сибирские электронные математические известия, 18(2), 1189-1200. [48]. https://doi.org/10.33048/SEMI.2021.18.090

Vancouver

Logachov A, Mogulskii AA. The moderate deviations principle for the trajectories of compound renewal processes on the half-line. Сибирские электронные математические известия. 2021;18(2):1189-1200. 48. doi: 10.33048/SEMI.2021.18.090

Author

Logachov, A. ; Mogulskii, A. A. / The moderate deviations principle for the trajectories of compound renewal processes on the half-line. In: Сибирские электронные математические известия. 2021 ; Vol. 18, No. 2. pp. 1189-1200.

BibTeX

@article{d57f7514ef6c47a2804ef1b1bb4a197f,
title = "The moderate deviations principle for the trajectories of compound renewal processes on the half-line",
abstract = "The moderate deviations principle is obtained for the trajectories of compound renewal processes on the half - line under the Cram{\`e}r moment condition.",
keywords = "large deviations principle, moderate deviations principle, compound renewal process, Cramer's condition, rate function, Compound renewal process, Rate function, Large deviations principle, Moderate deviations principle",
author = "A. Logachov and Mogulskii, {A. A.}",
note = "Funding Information: Logachov, A.V., Mogulskii, A.A., The moderate deviations principle for the trajectories of compound renewal processes on the half line. {\textcopyright} 2021 Logachov A.V., Mogulskii A.A. The paper is supported by the Mathematical Center in Akademgorodok, grant 075-15-2019-1675 by the Ministry of Science and Higher Education. Received April, 9, 2020, published November, 12, 2021. Publisher Copyright: {\textcopyright} 2021 Logachov A.V., Mogulskii A.A",
year = "2021",
doi = "10.33048/SEMI.2021.18.090",
language = "English",
volume = "18",
pages = "1189--1200",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",
number = "2",

}

RIS

TY - JOUR

T1 - The moderate deviations principle for the trajectories of compound renewal processes on the half-line

AU - Logachov, A.

AU - Mogulskii, A. A.

N1 - Funding Information: Logachov, A.V., Mogulskii, A.A., The moderate deviations principle for the trajectories of compound renewal processes on the half line. © 2021 Logachov A.V., Mogulskii A.A. The paper is supported by the Mathematical Center in Akademgorodok, grant 075-15-2019-1675 by the Ministry of Science and Higher Education. Received April, 9, 2020, published November, 12, 2021. Publisher Copyright: © 2021 Logachov A.V., Mogulskii A.A

PY - 2021

Y1 - 2021

N2 - The moderate deviations principle is obtained for the trajectories of compound renewal processes on the half - line under the Cramèr moment condition.

AB - The moderate deviations principle is obtained for the trajectories of compound renewal processes on the half - line under the Cramèr moment condition.

KW - large deviations principle

KW - moderate deviations principle

KW - compound renewal process

KW - Cramer's condition

KW - rate function

KW - Compound renewal process

KW - Rate function

KW - Large deviations principle

KW - Moderate deviations principle

UR - http://www.scopus.com/inward/record.url?scp=85124123610&partnerID=8YFLogxK

UR - https://elibrary.ru/item.asp?id=47669565

U2 - 10.33048/SEMI.2021.18.090

DO - 10.33048/SEMI.2021.18.090

M3 - Article

VL - 18

SP - 1189

EP - 1200

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

IS - 2

M1 - 48

ER -

ID: 35409183