Standard

The method of integral transformations in inverse problems of anomalous diffusion. / Bondarenko, A. N.; Bugueva, T. V.; Ivashchenko, D. S.

In: Russian Mathematics, Vol. 61, No. 3, 01.03.2017, p. 1-11.

Research output: Contribution to journalArticlepeer-review

Harvard

Bondarenko, AN, Bugueva, TV & Ivashchenko, DS 2017, 'The method of integral transformations in inverse problems of anomalous diffusion', Russian Mathematics, vol. 61, no. 3, pp. 1-11. https://doi.org/10.3103/S1066369X1703001X

APA

Vancouver

Bondarenko AN, Bugueva TV, Ivashchenko DS. The method of integral transformations in inverse problems of anomalous diffusion. Russian Mathematics. 2017 Mar 1;61(3):1-11. doi: 10.3103/S1066369X1703001X

Author

Bondarenko, A. N. ; Bugueva, T. V. ; Ivashchenko, D. S. / The method of integral transformations in inverse problems of anomalous diffusion. In: Russian Mathematics. 2017 ; Vol. 61, No. 3. pp. 1-11.

BibTeX

@article{be685a4863c64edbb9e5730b88d7647c,
title = "The method of integral transformations in inverse problems of anomalous diffusion",
abstract = "We consider an initial-boundary value problem for a multidimensional fractional diffusion equation. The aim of the paper is to construct an integral transformation which establishes a biunique correspondence between the fractional diffusion equation and the hyperbolic one. This transformation can be used for proving the uniqueness of the solution of the inverse problem for the fractional diffusion equation.",
keywords = "anomalous diffusion, fractional equation, initial-boundary value problem, inverse problem, RANDOM-WALK MODELS, DISCRETE, TIME FRACTIONAL DIFFUSION, EQUATION",
author = "Bondarenko, {A. N.} and Bugueva, {T. V.} and Ivashchenko, {D. S.}",
year = "2017",
month = mar,
day = "1",
doi = "10.3103/S1066369X1703001X",
language = "English",
volume = "61",
pages = "1--11",
journal = "Russian Mathematics",
issn = "1066-369X",
publisher = "Allerton Press Inc.",
number = "3",

}

RIS

TY - JOUR

T1 - The method of integral transformations in inverse problems of anomalous diffusion

AU - Bondarenko, A. N.

AU - Bugueva, T. V.

AU - Ivashchenko, D. S.

PY - 2017/3/1

Y1 - 2017/3/1

N2 - We consider an initial-boundary value problem for a multidimensional fractional diffusion equation. The aim of the paper is to construct an integral transformation which establishes a biunique correspondence between the fractional diffusion equation and the hyperbolic one. This transformation can be used for proving the uniqueness of the solution of the inverse problem for the fractional diffusion equation.

AB - We consider an initial-boundary value problem for a multidimensional fractional diffusion equation. The aim of the paper is to construct an integral transformation which establishes a biunique correspondence between the fractional diffusion equation and the hyperbolic one. This transformation can be used for proving the uniqueness of the solution of the inverse problem for the fractional diffusion equation.

KW - anomalous diffusion

KW - fractional equation

KW - initial-boundary value problem

KW - inverse problem

KW - RANDOM-WALK MODELS

KW - DISCRETE

KW - TIME FRACTIONAL DIFFUSION

KW - EQUATION

UR - http://www.scopus.com/inward/record.url?scp=85014749114&partnerID=8YFLogxK

U2 - 10.3103/S1066369X1703001X

DO - 10.3103/S1066369X1703001X

M3 - Article

AN - SCOPUS:85014749114

VL - 61

SP - 1

EP - 11

JO - Russian Mathematics

JF - Russian Mathematics

SN - 1066-369X

IS - 3

ER -

ID: 8975067