Research output: Contribution to journal › Article › peer-review
The method of integral transformations in inverse problems of anomalous diffusion. / Bondarenko, A. N.; Bugueva, T. V.; Ivashchenko, D. S.
In: Russian Mathematics, Vol. 61, No. 3, 01.03.2017, p. 1-11.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The method of integral transformations in inverse problems of anomalous diffusion
AU - Bondarenko, A. N.
AU - Bugueva, T. V.
AU - Ivashchenko, D. S.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - We consider an initial-boundary value problem for a multidimensional fractional diffusion equation. The aim of the paper is to construct an integral transformation which establishes a biunique correspondence between the fractional diffusion equation and the hyperbolic one. This transformation can be used for proving the uniqueness of the solution of the inverse problem for the fractional diffusion equation.
AB - We consider an initial-boundary value problem for a multidimensional fractional diffusion equation. The aim of the paper is to construct an integral transformation which establishes a biunique correspondence between the fractional diffusion equation and the hyperbolic one. This transformation can be used for proving the uniqueness of the solution of the inverse problem for the fractional diffusion equation.
KW - anomalous diffusion
KW - fractional equation
KW - initial-boundary value problem
KW - inverse problem
KW - RANDOM-WALK MODELS
KW - DISCRETE
KW - TIME FRACTIONAL DIFFUSION
KW - EQUATION
UR - http://www.scopus.com/inward/record.url?scp=85014749114&partnerID=8YFLogxK
U2 - 10.3103/S1066369X1703001X
DO - 10.3103/S1066369X1703001X
M3 - Article
AN - SCOPUS:85014749114
VL - 61
SP - 1
EP - 11
JO - Russian Mathematics
JF - Russian Mathematics
SN - 1066-369X
IS - 3
ER -
ID: 8975067