Standard

The Kirchhoff Indices for Circulant Graphs. / Mednykh, A. D.; Mednykh, I. A.

In: Siberian Mathematical Journal, Vol. 65, No. 6, 11.2024, p. 1359-1372.

Research output: Contribution to journalArticlepeer-review

Harvard

Mednykh, AD & Mednykh, IA 2024, 'The Kirchhoff Indices for Circulant Graphs', Siberian Mathematical Journal, vol. 65, no. 6, pp. 1359-1372. https://doi.org/10.1134/S0037446624060107

APA

Vancouver

Mednykh AD, Mednykh IA. The Kirchhoff Indices for Circulant Graphs. Siberian Mathematical Journal. 2024 Nov;65(6):1359-1372. doi: 10.1134/S0037446624060107

Author

Mednykh, A. D. ; Mednykh, I. A. / The Kirchhoff Indices for Circulant Graphs. In: Siberian Mathematical Journal. 2024 ; Vol. 65, No. 6. pp. 1359-1372.

BibTeX

@article{2e855eb0b09740d8bf3f3efb7cf96e03,
title = "The Kirchhoff Indices for Circulant Graphs",
abstract = "We present an approach yielding closed analytical formulas forthe Kirchhoff indices of circulant graphswith even and odd vertex valency respectivelyand the prism-like graphsbased on circulant graphs.Inspecting the asymptotics of the Kirchhoff index we show that in each of the above-mentioned casesthe index can be expressed asthe sum of a cubic polynomial and an exponentially vanishing remainder term.",
keywords = "517.545:517.962.2:519.173, Kirchhoff index, Laplace matrix, Wiener index, circulant graph, eigenvalue",
author = "Mednykh, {A. D.} and Mednykh, {I. A.}",
year = "2024",
month = nov,
doi = "10.1134/S0037446624060107",
language = "English",
volume = "65",
pages = "1359--1372",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "6",

}

RIS

TY - JOUR

T1 - The Kirchhoff Indices for Circulant Graphs

AU - Mednykh, A. D.

AU - Mednykh, I. A.

PY - 2024/11

Y1 - 2024/11

N2 - We present an approach yielding closed analytical formulas forthe Kirchhoff indices of circulant graphswith even and odd vertex valency respectivelyand the prism-like graphsbased on circulant graphs.Inspecting the asymptotics of the Kirchhoff index we show that in each of the above-mentioned casesthe index can be expressed asthe sum of a cubic polynomial and an exponentially vanishing remainder term.

AB - We present an approach yielding closed analytical formulas forthe Kirchhoff indices of circulant graphswith even and odd vertex valency respectivelyand the prism-like graphsbased on circulant graphs.Inspecting the asymptotics of the Kirchhoff index we show that in each of the above-mentioned casesthe index can be expressed asthe sum of a cubic polynomial and an exponentially vanishing remainder term.

KW - 517.545:517.962.2:519.173

KW - Kirchhoff index

KW - Laplace matrix

KW - Wiener index

KW - circulant graph

KW - eigenvalue

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85209367677&origin=inward&txGid=1d265f1e95cc8b2e9ff406f21849dc6f

UR - https://www.mendeley.com/catalogue/308427ce-8dd9-3044-9056-603ad5a9dead/

U2 - 10.1134/S0037446624060107

DO - 10.1134/S0037446624060107

M3 - Article

VL - 65

SP - 1359

EP - 1372

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 6

ER -

ID: 61105398