Research output: Contribution to journal › Article › peer-review
The influence of trap magmatism on the geochemical composition of brines of petroliferous deposits in the western areas of the kureika syneclise (Siberian platform). / Novikov, D.; Gordeeva; Chernykh, V. et al.
In: Russian Geology and Geophysics, Vol. 62, No. 6, 06.2021, p. 701-719.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The influence of trap magmatism on the geochemical composition of brines of petroliferous deposits in the western areas of the kureika syneclise (Siberian platform)
AU - Novikov, D.
AU - Gordeeva,
AU - Chernykh, V.
AU - Dultsev, F. F.
AU - Zhitova, L.
N1 - Funding Information: The research was supported by the Russian Science Foundation projects No. 0331-2019-0025 “Geochemistry, genesis, and mechanisms of groundwater formation in the sedimentary basins of the Siberian Arctic” and No. 0331-2019-0018 “Modeling of geological structure and evaluation of petroleum potential in the Phanerozoic and Neopro-terozoic sedimentary complexes of the Lena–Tunguska petroleum province and their applications to the exploration and subsoil licensing programs” and by the Russian Foundation for Basic Research under research project No. 18-05-70074 “The Arctic Resources.” Publisher Copyright: © 2021, Novosibirsk State University. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/6
Y1 - 2021/6
N2 - We present the results of study of the influence of trap magmatism on the geochemical composition of brines and on the geothermal regime of the Earth’s interior in the western areas of the Kureika syneclise. The Siberian trap province, which unites all cutting and layered tholeiite–basic magmatic intrusions and erupted basaltic lava, is the world’s largest Phanerozoic continental basalt province. Brines, hydrocarbon deposits, and organic matter of the sedimentary cover were subjected to a significant thermal impact as a result of the Permo-Triassic trap magmatism. During the trap intrusion, the maximum paleotemperatures in major Silurian (D’yavolskii), Ordovician (Baikit), and Cambrian (Deltula–Tanachi, Abakun, and Moktakon) productive horizons reached 650 °C. The Paleozoic and Proterozoic deposits of the study area contain brines with TDS = 50–470 g/dm3. By chemical composition, they are of Na, Na–Ca, Ca–Na, Ca–Mg, and Ca chloride types (according to the classification by S.A. Shchukarev), with mixed Ca–Na and Na–Ca chloride brines dominating. The studied brines can be divided into three groups according to the degree of metamorphism: low (S1), medium (S2), and high (S3). The first group includes mainly sodium chloride brines with TDS = 50–370 g/dm3 (rNa/rCl = 0.60–0.95; S ≤ 100). The second (dominating) group comprises Na–Ca, Ca–Na, Ca, and Ca–Mg chloride brines with TDS = 150–470 g/dm3 (rNa/rCl = 0.10–0.87; 100 ≤ S ≤ 300). The third group is Ca–Na and Ca chloride brines with TDS = 223–381 g/dm3 (rNa/rCl = 0.12–0.45; S ≥ 300). We have first established changes in the hydrogeochemical field (major-and trace-component and gas compositions) with distance from the contacts of intruded dolerite sills and dikes. Hydrocarbons (CH4, C2H6, C3H8, i-C4H10, n-C4H10, i-C5H12, n-C5H12, and C6H14) and water-soluble components I, B, and NH4 were most actively subjected to destruction. For example, at a distance of 100 m from the intrusion zone, the water-dissolved gases are domi-nated by CO2 (>90 vol.%), and CH4 amounts to 5 vol.%, whereas at a distance of 250 m, the concentration of CO2 decreases to 30 vol.%, and that of CH4 increases to 60–70 vol.%. In addition to the negative effect on the hydrocarbon preservation in the contact zone (≤400 m), the intrusive trap magmatism favored the formation of hydrocarbons in remote horizons. The reaction of intruding traps with brines of the sedimentary cover led to the saturation of the latter with iron, aluminum, and silica, which suggests extraction of metals in the form of salts from magmatic melts into an ore-bearing fluid.
AB - We present the results of study of the influence of trap magmatism on the geochemical composition of brines and on the geothermal regime of the Earth’s interior in the western areas of the Kureika syneclise. The Siberian trap province, which unites all cutting and layered tholeiite–basic magmatic intrusions and erupted basaltic lava, is the world’s largest Phanerozoic continental basalt province. Brines, hydrocarbon deposits, and organic matter of the sedimentary cover were subjected to a significant thermal impact as a result of the Permo-Triassic trap magmatism. During the trap intrusion, the maximum paleotemperatures in major Silurian (D’yavolskii), Ordovician (Baikit), and Cambrian (Deltula–Tanachi, Abakun, and Moktakon) productive horizons reached 650 °C. The Paleozoic and Proterozoic deposits of the study area contain brines with TDS = 50–470 g/dm3. By chemical composition, they are of Na, Na–Ca, Ca–Na, Ca–Mg, and Ca chloride types (according to the classification by S.A. Shchukarev), with mixed Ca–Na and Na–Ca chloride brines dominating. The studied brines can be divided into three groups according to the degree of metamorphism: low (S1), medium (S2), and high (S3). The first group includes mainly sodium chloride brines with TDS = 50–370 g/dm3 (rNa/rCl = 0.60–0.95; S ≤ 100). The second (dominating) group comprises Na–Ca, Ca–Na, Ca, and Ca–Mg chloride brines with TDS = 150–470 g/dm3 (rNa/rCl = 0.10–0.87; 100 ≤ S ≤ 300). The third group is Ca–Na and Ca chloride brines with TDS = 223–381 g/dm3 (rNa/rCl = 0.12–0.45; S ≥ 300). We have first established changes in the hydrogeochemical field (major-and trace-component and gas compositions) with distance from the contacts of intruded dolerite sills and dikes. Hydrocarbons (CH4, C2H6, C3H8, i-C4H10, n-C4H10, i-C5H12, n-C5H12, and C6H14) and water-soluble components I, B, and NH4 were most actively subjected to destruction. For example, at a distance of 100 m from the intrusion zone, the water-dissolved gases are domi-nated by CO2 (>90 vol.%), and CH4 amounts to 5 vol.%, whereas at a distance of 250 m, the concentration of CO2 decreases to 30 vol.%, and that of CH4 increases to 60–70 vol.%. In addition to the negative effect on the hydrocarbon preservation in the contact zone (≤400 m), the intrusive trap magmatism favored the formation of hydrocarbons in remote horizons. The reaction of intruding traps with brines of the sedimentary cover led to the saturation of the latter with iron, aluminum, and silica, which suggests extraction of metals in the form of salts from magmatic melts into an ore-bearing fluid.
KW - Arctic
KW - Degree of metamorphism
KW - Geochemical composition of brines
KW - Hydrogeology
KW - Intrusion
KW - Kureika syneclise
KW - Paleotemperatures
KW - Petroleum presence
KW - Siberian Platform
KW - Trap magmatism
UR - http://www.scopus.com/inward/record.url?scp=85108697626&partnerID=8YFLogxK
U2 - 10.2113/RGG20194079
DO - 10.2113/RGG20194079
M3 - Article
AN - SCOPUS:85108697626
VL - 62
SP - 701
EP - 719
JO - Russian Geology and Geophysics
JF - Russian Geology and Geophysics
SN - 1068-7971
IS - 6
ER -
ID: 28919766