Research output: Contribution to journal › Article › peer-review
The effect of ball mass on the mechanochemical transformation of a single-component organic system : anhydrous caffeine. / Michalchuk, Adam A.L.; Tumanov, Ivan A.; Boldyreva, Elena V.
In: Journal of Materials Science, Vol. 53, No. 19, 01.10.2018, p. 13380-13389.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The effect of ball mass on the mechanochemical transformation of a single-component organic system
T2 - anhydrous caffeine
AU - Michalchuk, Adam A.L.
AU - Tumanov, Ivan A.
AU - Boldyreva, Elena V.
N1 - Publisher Copyright: © 2018, The Author(s).
PY - 2018/10/1
Y1 - 2018/10/1
N2 - Abstarct: Mechanochemical methodologies, particularly ball milling, have become commonplace in many laboratories. In the present work, we examine the effects of milling ball mass on the polymorphic conversion of anhydrous caffeine. By investigating a single-phase system, the rate-limiting step of particle–particle contact formation is eliminated. It is found that larger milling balls lead to considerably faster conversion rates. Modelling of the transformation rate suggests that a single, time-independent rate constant is insufficient to describe the transformation. Instead, a convolution of at least two rate-determining processes is required to correctly describe the transformation. This suggests that the early stages of the transformation are governed only by the number of particle–ball collisions. As the reaction proceeds, these collisions less frequently involve reactant, and the rate becomes limited by mass transport, or mixing, even in originally single-phase systems, which become multi-phase as the product is formed. Larger milling balls are less hindered by poorly mixed material. This likely results from a combination of higher impact energies and higher surface areas associated with the larger milling balls. Such insight is important for the selective and targeted design of mechanochemical processes.
AB - Abstarct: Mechanochemical methodologies, particularly ball milling, have become commonplace in many laboratories. In the present work, we examine the effects of milling ball mass on the polymorphic conversion of anhydrous caffeine. By investigating a single-phase system, the rate-limiting step of particle–particle contact formation is eliminated. It is found that larger milling balls lead to considerably faster conversion rates. Modelling of the transformation rate suggests that a single, time-independent rate constant is insufficient to describe the transformation. Instead, a convolution of at least two rate-determining processes is required to correctly describe the transformation. This suggests that the early stages of the transformation are governed only by the number of particle–ball collisions. As the reaction proceeds, these collisions less frequently involve reactant, and the rate becomes limited by mass transport, or mixing, even in originally single-phase systems, which become multi-phase as the product is formed. Larger milling balls are less hindered by poorly mixed material. This likely results from a combination of higher impact energies and higher surface areas associated with the larger milling balls. Such insight is important for the selective and targeted design of mechanochemical processes.
KW - COCRYSTALLIZATION
KW - IN-SITU
KW - MECHANICAL ACTIVATION
KW - MECHANOSYNTHESIS
KW - PHASE-TRANSFORMATIONS
KW - POLYMORPH CONTROL
KW - POWDER MIXTURES
KW - RAMAN-SPECTROSCOPY
KW - TEMPERATURE
KW - X-RAY-DIFFRACTION
UR - http://www.scopus.com/inward/record.url?scp=85045746777&partnerID=8YFLogxK
U2 - 10.1007/s10853-018-2324-2
DO - 10.1007/s10853-018-2324-2
M3 - Article
C2 - 30996469
AN - SCOPUS:85045746777
VL - 53
SP - 13380
EP - 13389
JO - Journal of Materials Science
JF - Journal of Materials Science
SN - 0022-2461
IS - 19
ER -
ID: 12799027