The Degree of Decidable Categoricity of a Model with Infinite Solutions for Complete Formulas. / Goncharov, S. S.; Marchuk, M. I.
In: Algebra and Logic, Vol. 60, No. 3, 07.2021, p. 200-206.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The Degree of Decidable Categoricity of a Model with Infinite Solutions for Complete Formulas
AU - Goncharov, S. S.
AU - Marchuk, M. I.
N1 - Funding Information: Supported by RFBR, project No. 20-01-00300. Publisher Copyright: © 2021, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2021/7
Y1 - 2021/7
N2 - We construct a decidable prime model in which the degree of a set of complete formulas is equal to 0', infinitely many tuples of elements comply with every complete formula, and the decidable categoricity spectrum coincides with the set of all PA-degrees.
AB - We construct a decidable prime model in which the degree of a set of complete formulas is equal to 0', infinitely many tuples of elements comply with every complete formula, and the decidable categoricity spectrum coincides with the set of all PA-degrees.
KW - autostability relative to strong constructivizations
KW - computable categoricity
KW - computable model
KW - decidable categoricity spectrum
KW - decidable model
KW - degree of decidable categoricity
KW - PAdegree
UR - http://www.scopus.com/inward/record.url?scp=85118544308&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/72832a64-d8e3-30ff-9a67-bcb63c4c486a/
U2 - 10.1007/s10469-021-09642-y
DO - 10.1007/s10469-021-09642-y
M3 - Article
AN - SCOPUS:85118544308
VL - 60
SP - 200
EP - 206
JO - Algebra and Logic
JF - Algebra and Logic
SN - 0002-5232
IS - 3
ER -
ID: 34597904