Research output: Contribution to journal › Article › peer-review
The complexity of quasivariety lattices. II. / Schwidefsky, M. V.
In: Siberian Electronic Mathematical Reports, Vol. 20, No. 1, 2023, p. 501-513.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - The complexity of quasivariety lattices. II
AU - Schwidefsky, M. V.
N1 - The research was carried out under the support of the Russian Science Foundation, project no. 22-21-00104.
PY - 2023
Y1 - 2023
N2 - We prove that if a quasivariety K contains a finite B*- class relative to some subquasivariety and some variety possessing some additional property, thenK contains continuum many Q-universal nonpro finite subquasivarieties having an independent quasi-equational basis as well as continuum many Q-universal non-profinite subquasivarieties having no such basis.
AB - We prove that if a quasivariety K contains a finite B*- class relative to some subquasivariety and some variety possessing some additional property, thenK contains continuum many Q-universal nonpro finite subquasivarieties having an independent quasi-equational basis as well as continuum many Q-universal non-profinite subquasivarieties having no such basis.
KW - inverse limit
KW - profinite quasivariety
KW - profinite structure
KW - quasi-equational basis
KW - quasivariety
UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85167875316&origin=inward&txGid=8ffd5ca4ad23575ace049e000b44de78
UR - https://www.elibrary.ru/item.asp?id=54768302
UR - https://www.mendeley.com/catalogue/7a1d3e47-e7dd-34b5-9869-c0f8e1e635f2/
U2 - 10.33048/semi.2023.20.030
DO - 10.33048/semi.2023.20.030
M3 - Article
VL - 20
SP - 501
EP - 513
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
IS - 1
ER -
ID: 59132570