Research output: Contribution to conference › Paper › peer-review
Telescope Array Surface Detector Energy and Arrival Direction Estimation Using Deep Learning. / The Telescope Array Collaboration; Калашев, Олег Евгеньевич.
2022. Paper presented at 37th International Cosmic Ray Conference, Берлин, Berlin, Germany.Research output: Contribution to conference › Paper › peer-review
}
TY - CONF
T1 - Telescope Array Surface Detector Energy and Arrival Direction Estimation Using Deep Learning
AU - The Telescope Array Collaboration
AU - Ivanov, D.
AU - Kuznetsov, M. Yu
AU - Rubtsov, G. I.
AU - Sako, T.
AU - Tsunesada, Y.
AU - Zhezher, Y. V.
AU - Abbasi, R. U.
AU - Abe, M.
AU - Abu-Zayyad, T.
AU - Allen, M.
AU - Arai, Y.
AU - Barcikowski, E.
AU - Belz, J. W.
AU - Bergman, D. R.
AU - Blake, S. A.
AU - Buckland, I.
AU - Cady, R.
AU - Cheon, B. G.
AU - Chiba, J.
AU - Chikawa, M.
AU - Fujii, T.
AU - Fujisue, K.
AU - Fujita, K.
AU - Fujiwara, R.
AU - Fukushima, M.
AU - Fukushima, R.
AU - Furlich, G.
AU - Gonzalez, R.
AU - Hanlon, W.
AU - Hayashi, M.
AU - Hayashida, N.
AU - Hibino, K.
AU - Higuchi, R.
AU - Honda, K.
AU - Ikeda, D.
AU - Inadomi, T.
AU - Inoue, N.
AU - Ishii, T.
AU - Ito, H.
AU - Ivanov, D.
AU - Iwakura, H.
AU - Jeong, H. M.
AU - Jeong, S.
AU - Jui, C. C.H.
AU - Kadota, K.
AU - Kakimoto, F.
AU - Kasahara, K.
AU - Kasami, S.
AU - Kawai, H.
AU - Kawakami, S.
AU - Калашев, Олег Евгеньевич
N1 - Conference code: 37
PY - 2022/3/18
Y1 - 2022/3/18
N2 - A novel ultra-high-energy cosmic rays energy and arrival direction reconstruction method for Telescope Array surface detector is presented. The analysis is based on a deep convolutional neural network using detector signal time series as the input and the network is trained on a large Monte-Carlo dataset. This method is compared in terms of statistical and systematic energy and arrival direction determination errors with the standard Telescope Array surface detector event reconstruction procedure.
AB - A novel ultra-high-energy cosmic rays energy and arrival direction reconstruction method for Telescope Array surface detector is presented. The analysis is based on a deep convolutional neural network using detector signal time series as the input and the network is trained on a large Monte-Carlo dataset. This method is compared in terms of statistical and systematic energy and arrival direction determination errors with the standard Telescope Array surface detector event reconstruction procedure.
UR - https://www.scopus.com/inward/record.url?eid=2-s2.0-85144403106&partnerID=40&md5=e9e2462c78541edd1533fda7371a17f4
UR - https://www.mendeley.com/catalogue/7e76eb9d-b554-3d53-af80-6d02b8eb7304/
U2 - 10.22323/1.395.0252
DO - 10.22323/1.395.0252
M3 - Paper
T2 - 37th International Cosmic Ray Conference
Y2 - 12 July 2021 through 23 July 2021
ER -
ID: 46054694