Research output: Contribution to journal › Article › peer-review
Structural and functional divergence of the Mpc1 genes in wheat and barley. / Strygina, Ksenia V.; Khlestkina, Elena K.
In: BMC Evolutionary Biology, Vol. 19, No. Suppl 1, 45, 26.02.2019, p. 45.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Structural and functional divergence of the Mpc1 genes in wheat and barley
AU - Strygina, Ksenia V.
AU - Khlestkina, Elena K.
PY - 2019/2/26
Y1 - 2019/2/26
N2 - Background: The members of the Triticeae tribe are characterised by the presence of orthologous and homoeologous gene copies regulating flavonoid biosynthesis. Among transcription factors constituting a regulatory MBW complex, the greatest contribution to the regulation of flavonoid biosynthetic pathway is invested by R2R3-Myb-type TFs. Differently expressed R2R3-Myb copies activate the synthesis of various classes of flavonoid compounds in different plant tissues. The aim of this research was the identification, comparison and analysis of full-length sequences of the duplicated R2R3-Myb Mpc1 (Myb protein c1) gene copies in barley and wheat genomes. Results: The Mpc1 genes were identified in homoeologous group 4 and 7 chromosomes: a total of 3 copies in barley (Hordeum vulgare L.) and 8 copies in bread wheat (Triticum aestivum L.) genomes. All Mpc1 genes have a similar two-exon structure, and almost all of them are transcriptionally active. The calculation of the divergence time revealed that first duplication between 4 and 7 chromosomes of the common ancestor of the Triticeae tribe occurred about 35-46 million years ago (MYA); the last duplication arised about 16-19 MYA before the divergence Triticum and Hordeum genera The connection between gene expression and the appearance of anthocyanin pigmentation was found for three genes from homoeologous group 4 chromosomes: TaMpc1-A2 (5AL) in wheat coleoptile, HvMpc1-H2 (4HL) in barley lemma and aleurone layer, and HvMpc1-H3 (4HL) in barley aleurone layer. TaMpc1-D4 (4DL) from the wheat genome showed a strong level of expression regardless of the colour of coleoptile or pericarp. It is assumed, that this gene regulates the biosynthesis of uncoloured flavonoids in analysed tissues. Conclusions: The regulatory R2R3-Myb genes involved in anthocyanin synthesis were identified and characterised in Triticeae tribe species. Genes designated HvMpc1-H2 and HvMpc1-H3 appeared to be the main factors underlying intraspecific variation of H. vulgare by lemma and aleurone colour. TaMpc1-A2 is the co-regulator of the Mpc1-1 genes in bread wheat genome controlling anthocyanin synthesis in coleoptile.
AB - Background: The members of the Triticeae tribe are characterised by the presence of orthologous and homoeologous gene copies regulating flavonoid biosynthesis. Among transcription factors constituting a regulatory MBW complex, the greatest contribution to the regulation of flavonoid biosynthetic pathway is invested by R2R3-Myb-type TFs. Differently expressed R2R3-Myb copies activate the synthesis of various classes of flavonoid compounds in different plant tissues. The aim of this research was the identification, comparison and analysis of full-length sequences of the duplicated R2R3-Myb Mpc1 (Myb protein c1) gene copies in barley and wheat genomes. Results: The Mpc1 genes were identified in homoeologous group 4 and 7 chromosomes: a total of 3 copies in barley (Hordeum vulgare L.) and 8 copies in bread wheat (Triticum aestivum L.) genomes. All Mpc1 genes have a similar two-exon structure, and almost all of them are transcriptionally active. The calculation of the divergence time revealed that first duplication between 4 and 7 chromosomes of the common ancestor of the Triticeae tribe occurred about 35-46 million years ago (MYA); the last duplication arised about 16-19 MYA before the divergence Triticum and Hordeum genera The connection between gene expression and the appearance of anthocyanin pigmentation was found for three genes from homoeologous group 4 chromosomes: TaMpc1-A2 (5AL) in wheat coleoptile, HvMpc1-H2 (4HL) in barley lemma and aleurone layer, and HvMpc1-H3 (4HL) in barley aleurone layer. TaMpc1-D4 (4DL) from the wheat genome showed a strong level of expression regardless of the colour of coleoptile or pericarp. It is assumed, that this gene regulates the biosynthesis of uncoloured flavonoids in analysed tissues. Conclusions: The regulatory R2R3-Myb genes involved in anthocyanin synthesis were identified and characterised in Triticeae tribe species. Genes designated HvMpc1-H2 and HvMpc1-H3 appeared to be the main factors underlying intraspecific variation of H. vulgare by lemma and aleurone colour. TaMpc1-A2 is the co-regulator of the Mpc1-1 genes in bread wheat genome controlling anthocyanin synthesis in coleoptile.
KW - Anthocyanin biosynthesis
KW - Flavonoid pigments
KW - Gene duplication
KW - Gene evolution
KW - Hordeum
KW - Myb
KW - Near-isogenic lines
KW - Transcription factor
KW - Triticum
KW - PROTEIN
KW - MYB TRANSCRIPTION FACTORS
KW - FAMILY
KW - FLAVONOID BIOSYNTHESIS
KW - EVOLUTION
KW - COLOR GENES
KW - BREAD WHEAT
KW - PLANTS
KW - REGULATORS
KW - DIVERSITY
UR - http://www.scopus.com/inward/record.url?scp=85062226628&partnerID=8YFLogxK
U2 - 10.1186/s12862-019-1378-3
DO - 10.1186/s12862-019-1378-3
M3 - Article
C2 - 30813913
AN - SCOPUS:85062226628
VL - 19
SP - 45
JO - BMC Evolutionary Biology
JF - BMC Evolutionary Biology
SN - 1471-2148
IS - Suppl 1
M1 - 45
ER -
ID: 18658948