Research output: Contribution to journal › Article › peer-review
Sensitive detection of level anticrossing spectra of nitrogen vacancy centers in diamond. / Anishchik, S. V.; Ivanov, K. L.
In: Physical Review B, Vol. 96, No. 11, 115142, 21.09.2017.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Sensitive detection of level anticrossing spectra of nitrogen vacancy centers in diamond
AU - Anishchik, S. V.
AU - Ivanov, K. L.
PY - 2017/9/21
Y1 - 2017/9/21
N2 - We report a study of the magnetic field dependence of photoluminescence of NV- centers (negatively charged nitrogen vacancy centers) in diamond single crystals. In such a magnetic field dependence characteristic sharp features are observed, which are coming from level anticrossings (LACs) in a coupled electron-nuclear spin system. For studying such LAC lines we use sensitive lock-in detection to measure the photoluminescence intensity. This experimental technique allows us to obtain new LAC lines. Additionally, a remarkably strong dependence of the LAC lines on the modulation frequency is found. Specifically, upon decrease of the modulation frequency from 12 kHz to 17 Hz the amplitude of the LAC lines increases by approximately two orders of magnitude. To take a quantitative account for such effects, we present a theoretical model, which describes the spin dynamics in a coupled electron-nuclear spin system under the action of an oscillating external magnetic field. Good agreement between experiments and theory allows us to conclude that the observed effects are originating from coherent spin polarization exchange in a coupled spin system comprising the spin-polarized NV- center. Our results are of great practical importance allowing one to optimize the experimental conditions for probing LAC-derived lines in diamond crystals comprising NV- centers and for indirect detection and identification of other paramagnetic defect centers.
AB - We report a study of the magnetic field dependence of photoluminescence of NV- centers (negatively charged nitrogen vacancy centers) in diamond single crystals. In such a magnetic field dependence characteristic sharp features are observed, which are coming from level anticrossings (LACs) in a coupled electron-nuclear spin system. For studying such LAC lines we use sensitive lock-in detection to measure the photoluminescence intensity. This experimental technique allows us to obtain new LAC lines. Additionally, a remarkably strong dependence of the LAC lines on the modulation frequency is found. Specifically, upon decrease of the modulation frequency from 12 kHz to 17 Hz the amplitude of the LAC lines increases by approximately two orders of magnitude. To take a quantitative account for such effects, we present a theoretical model, which describes the spin dynamics in a coupled electron-nuclear spin system under the action of an oscillating external magnetic field. Good agreement between experiments and theory allows us to conclude that the observed effects are originating from coherent spin polarization exchange in a coupled spin system comprising the spin-polarized NV- center. Our results are of great practical importance allowing one to optimize the experimental conditions for probing LAC-derived lines in diamond crystals comprising NV- centers and for indirect detection and identification of other paramagnetic defect centers.
KW - N-V CENTERS
KW - COLOR-CENTERS
KW - ELECTRON-SPIN
KW - SINGLE SPINS
KW - SPECTROSCOPY
KW - DYNAMICS
KW - ENTANGLEMENT
KW - MICROSCOPY
KW - RESOLUTION
KW - RESONANCE
UR - http://www.scopus.com/inward/record.url?scp=85030096853&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.96.115142
DO - 10.1103/PhysRevB.96.115142
M3 - Article
AN - SCOPUS:85030096853
VL - 96
JO - Physical Review B
JF - Physical Review B
SN - 2469-9950
IS - 11
M1 - 115142
ER -
ID: 9895582