Research output: Contribution to journal › Article › peer-review
Selective Gas Uptake and Rotational Dynamics in a (3,24)-Connected Metal-Organic Framework Material. / Trenholme, William J.F.; Kolokolov, Daniil I.; Bound, Michelle et al.
In: Journal of the American Chemical Society, Vol. 143, No. 9, 10.03.2021, p. 3348-3358.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Selective Gas Uptake and Rotational Dynamics in a (3,24)-Connected Metal-Organic Framework Material
AU - Trenholme, William J.F.
AU - Kolokolov, Daniil I.
AU - Bound, Michelle
AU - Argent, Stephen P.
AU - Gould, Jamie A.
AU - Li, Jiangnan
AU - Barnett, Sarah A.
AU - Blake, Alexander J.
AU - Stepanov, Alexander G.
AU - Besley, Elena
AU - Easun, Timothy L.
AU - Yang, Sihai
AU - Schröder, Martin
N1 - Publisher Copyright: © 2021 American Chemical Society. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/3/10
Y1 - 2021/3/10
N2 - The desolvated (3,24)-connected metal-organic framework (MOF) material, MFM-160a, [Cu3(L)(H2O)3] [H6L = 1,3,5-triazine-2,4,6-tris(aminophenyl-4-isophthalic acid)], exhibits excellent high-pressure uptake of CO2 (110 wt% at 20 bar, 298 K) and highly selective separation of C2 hydrocarbons from CH4 at 1 bar pressure. Henry's law selectivities of 79:1 for C2H2:CH4 and 70:1 for C2H4:CH4 at 298 K are observed, consistent with ideal adsorption solution theory (IAST) predictions. Significantly, MFM-160a shows a selectivity of 16:1 for C2H2:CO2. Solid-state 2H NMR spectroscopic studies on partially deuterated MFM-160-d12 confirm an ultra-low barrier (∼2 kJ mol-1) to rotation of the phenyl group in the activated MOF and a rotation rate 5 orders of magnitude slower than usually observed for solid-state materials (1.4 × 106 Hz cf. 1011-1013 Hz). Upon introduction of CO2 or C2H2 into desolvated MFM-160a, this rate of rotation was found to increase with increasing gas pressure, a phenomenon attributed to the weakening of an intramolecular hydrogen bond in the triazine-containing linker upon gas binding. DFT calculations of binding energies and interactions of CO2 and C2H2 around the triazine core are entirely consistent with the 2H NMR spectroscopic observations.
AB - The desolvated (3,24)-connected metal-organic framework (MOF) material, MFM-160a, [Cu3(L)(H2O)3] [H6L = 1,3,5-triazine-2,4,6-tris(aminophenyl-4-isophthalic acid)], exhibits excellent high-pressure uptake of CO2 (110 wt% at 20 bar, 298 K) and highly selective separation of C2 hydrocarbons from CH4 at 1 bar pressure. Henry's law selectivities of 79:1 for C2H2:CH4 and 70:1 for C2H4:CH4 at 298 K are observed, consistent with ideal adsorption solution theory (IAST) predictions. Significantly, MFM-160a shows a selectivity of 16:1 for C2H2:CO2. Solid-state 2H NMR spectroscopic studies on partially deuterated MFM-160-d12 confirm an ultra-low barrier (∼2 kJ mol-1) to rotation of the phenyl group in the activated MOF and a rotation rate 5 orders of magnitude slower than usually observed for solid-state materials (1.4 × 106 Hz cf. 1011-1013 Hz). Upon introduction of CO2 or C2H2 into desolvated MFM-160a, this rate of rotation was found to increase with increasing gas pressure, a phenomenon attributed to the weakening of an intramolecular hydrogen bond in the triazine-containing linker upon gas binding. DFT calculations of binding energies and interactions of CO2 and C2H2 around the triazine core are entirely consistent with the 2H NMR spectroscopic observations.
UR - http://www.scopus.com/inward/record.url?scp=85102965139&partnerID=8YFLogxK
U2 - 10.1021/jacs.0c11202
DO - 10.1021/jacs.0c11202
M3 - Article
C2 - 33625838
AN - SCOPUS:85102965139
VL - 143
SP - 3348
EP - 3358
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
SN - 0002-7863
IS - 9
ER -
ID: 28143388