Research output: Contribution to journal › Article › peer-review
Rotationally symmetric viscous gas flows. / Weigant, W.; Plotnikov, P. I.
In: Computational Mathematics and Mathematical Physics, Vol. 57, No. 3, 01.03.2017, p. 387-400.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Rotationally symmetric viscous gas flows
AU - Weigant, W.
AU - Plotnikov, P. I.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - The Dirichlet boundary value problem for the Navier–Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval (γ*,∞) with a critical exponent γ* < 4/3 is proved.
AB - The Dirichlet boundary value problem for the Navier–Stokes equations of a barotropic viscous compressible fluid is considered. The flow region and the data of the problem are assumed to be invariant under rotations about a fixed axis. The existence of rotationally symmetric weak solutions for all adiabatic exponents from the interval (γ*,∞) with a critical exponent γ* < 4/3 is proved.
KW - Dirichlet boundary value problem
KW - Navier–Stokes equations
KW - rotational symmetry
KW - viscous gas
KW - weak solutions
KW - NAVIER-STOKES EQUATIONS
KW - COMPRESSIBLE ISENTROPIC FLUIDS
KW - Navier-Stokes equations
UR - http://www.scopus.com/inward/record.url?scp=85017663886&partnerID=8YFLogxK
U2 - 10.1134/S0965542517030150
DO - 10.1134/S0965542517030150
M3 - Article
AN - SCOPUS:85017663886
VL - 57
SP - 387
EP - 400
JO - Computational Mathematics and Mathematical Physics
JF - Computational Mathematics and Mathematical Physics
SN - 0965-5425
IS - 3
ER -
ID: 9079092