Standard

Quasivariety generated by the suborder lattice. I. Equational bases. / Kadyrova, O. A.; Schwidefsky, M. V.

In: Siberian Electronic Mathematical Reports, Vol. 20, No. 1, 2023, p. 62-71.

Research output: Contribution to journalArticlepeer-review

Harvard

Kadyrova, OA & Schwidefsky, MV 2023, 'Quasivariety generated by the suborder lattice. I. Equational bases', Siberian Electronic Mathematical Reports, vol. 20, no. 1, pp. 62-71. https://doi.org/10.33048/semi.2023.20.006

APA

Vancouver

Kadyrova OA, Schwidefsky MV. Quasivariety generated by the suborder lattice. I. Equational bases. Siberian Electronic Mathematical Reports. 2023;20(1):62-71. doi: 10.33048/semi.2023.20.006

Author

Kadyrova, O. A. ; Schwidefsky, M. V. / Quasivariety generated by the suborder lattice. I. Equational bases. In: Siberian Electronic Mathematical Reports. 2023 ; Vol. 20, No. 1. pp. 62-71.

BibTeX

@article{555f2ef909874ae687cf15c2f33eb664,
title = "Quasivariety generated by the suborder lattice. I. Equational bases",
abstract = "For each cardinal κ > 0, the quasivariety generated by the suborder lattice of Mk is a finitely based variety. An equational basis for this variety is found.",
keywords = "lattice, poset, quasivariety, variety",
author = "Kadyrova, {O. A.} and Schwidefsky, {M. V.}",
note = "Kadyrova, O. A., Schwidefsky, M. V., Quasivarieties generated by small suborder lattices. I. Equational bases. {\textcopyright} 2022 Kadyrova, O. A., Schwidefsky, M. V.. The research was carried out under the support of the Russian Science Foundation, project no. 22-21-00104.",
year = "2023",
doi = "10.33048/semi.2023.20.006",
language = "English",
volume = "20",
pages = "62--71",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",
number = "1",

}

RIS

TY - JOUR

T1 - Quasivariety generated by the suborder lattice. I. Equational bases

AU - Kadyrova, O. A.

AU - Schwidefsky, M. V.

N1 - Kadyrova, O. A., Schwidefsky, M. V., Quasivarieties generated by small suborder lattices. I. Equational bases. © 2022 Kadyrova, O. A., Schwidefsky, M. V.. The research was carried out under the support of the Russian Science Foundation, project no. 22-21-00104.

PY - 2023

Y1 - 2023

N2 - For each cardinal κ > 0, the quasivariety generated by the suborder lattice of Mk is a finitely based variety. An equational basis for this variety is found.

AB - For each cardinal κ > 0, the quasivariety generated by the suborder lattice of Mk is a finitely based variety. An equational basis for this variety is found.

KW - lattice

KW - poset

KW - quasivariety

KW - variety

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85150759299&origin=inward&txGid=26f4874230925247357df96f5e909207

UR - https://www.mendeley.com/catalogue/66a7b7af-dfc3-300a-ac01-e8efd8a1e2c9/

U2 - 10.33048/semi.2023.20.006

DO - 10.33048/semi.2023.20.006

M3 - Article

VL - 20

SP - 62

EP - 71

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

IS - 1

ER -

ID: 55496673