Standard

Quasiequational Bases of Cantor Algebras. / Basheyeva, A. O.; Schwidefsky, M. V.

In: Siberian Mathematical Journal, Vol. 59, No. 3, 01.05.2018, p. 375-382.

Research output: Contribution to journalArticlepeer-review

Harvard

Basheyeva, AO & Schwidefsky, MV 2018, 'Quasiequational Bases of Cantor Algebras', Siberian Mathematical Journal, vol. 59, no. 3, pp. 375-382. https://doi.org/10.1134/S0037446618030011

APA

Basheyeva, A. O., & Schwidefsky, M. V. (2018). Quasiequational Bases of Cantor Algebras. Siberian Mathematical Journal, 59(3), 375-382. https://doi.org/10.1134/S0037446618030011

Vancouver

Basheyeva AO, Schwidefsky MV. Quasiequational Bases of Cantor Algebras. Siberian Mathematical Journal. 2018 May 1;59(3):375-382. doi: 10.1134/S0037446618030011

Author

Basheyeva, A. O. ; Schwidefsky, M. V. / Quasiequational Bases of Cantor Algebras. In: Siberian Mathematical Journal. 2018 ; Vol. 59, No. 3. pp. 375-382.

BibTeX

@article{1057c2f2fc584f9197f6fb69ac9026f9,
title = "Quasiequational Bases of Cantor Algebras",
abstract = "There are continuum many quasivarieties of Cantor algebras having an ω-independent quasiequational basis but no independent quasiequational basis whose intersection does have an independent quasiequational basis.",
keywords = "Cantor algebra, independent basis, quasi-identity, quasivariety, QUASIVARIETIES",
author = "Basheyeva, {A. O.} and Schwidefsky, {M. V.}",
year = "2018",
month = may,
day = "1",
doi = "10.1134/S0037446618030011",
language = "English",
volume = "59",
pages = "375--382",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "3",

}

RIS

TY - JOUR

T1 - Quasiequational Bases of Cantor Algebras

AU - Basheyeva, A. O.

AU - Schwidefsky, M. V.

PY - 2018/5/1

Y1 - 2018/5/1

N2 - There are continuum many quasivarieties of Cantor algebras having an ω-independent quasiequational basis but no independent quasiequational basis whose intersection does have an independent quasiequational basis.

AB - There are continuum many quasivarieties of Cantor algebras having an ω-independent quasiequational basis but no independent quasiequational basis whose intersection does have an independent quasiequational basis.

KW - Cantor algebra

KW - independent basis

KW - quasi-identity

KW - quasivariety

KW - QUASIVARIETIES

UR - http://www.scopus.com/inward/record.url?scp=85049313471&partnerID=8YFLogxK

U2 - 10.1134/S0037446618030011

DO - 10.1134/S0037446618030011

M3 - Article

AN - SCOPUS:85049313471

VL - 59

SP - 375

EP - 382

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 3

ER -

ID: 14337745