Standard

Quasidenseness in and Projective Parallelotopes. / Gutman, A. E.; Emelianenkov, I. A.

In: Siberian Mathematical Journal, Vol. 65, No. 2, 03.2024, p. 265-278.

Research output: Contribution to journalArticlepeer-review

Harvard

Gutman, AE & Emelianenkov, IA 2024, 'Quasidenseness in and Projective Parallelotopes', Siberian Mathematical Journal, vol. 65, no. 2, pp. 265-278. https://doi.org/10.1134/S0037446624020034

APA

Gutman, A. E., & Emelianenkov, I. A. (2024). Quasidenseness in and Projective Parallelotopes. Siberian Mathematical Journal, 65(2), 265-278. https://doi.org/10.1134/S0037446624020034

Vancouver

Gutman AE, Emelianenkov IA. Quasidenseness in and Projective Parallelotopes. Siberian Mathematical Journal. 2024 Mar;65(2):265-278. doi: 10.1134/S0037446624020034

Author

Gutman, A. E. ; Emelianenkov, I. A. / Quasidenseness in and Projective Parallelotopes. In: Siberian Mathematical Journal. 2024 ; Vol. 65, No. 2. pp. 265-278.

BibTeX

@article{338d021e38cb457a9455a19d92f43196,
title = "Quasidenseness in and Projective Parallelotopes",
abstract = "We establish two new criteria for the closedness of Archimedean cones in countable-dimensional locally convex spacesin terms of projective parallelotopes and projective automorphisms.We also answer some open questions about quasidenseness and quasi-interior.",
keywords = "517.98, Archimedean ordered vector space, cone, locally convex space, quasi-interior, quasidense set, weak topology",
author = "Gutman, {A. E.} and Emelianenkov, {I. A.}",
year = "2024",
month = mar,
doi = "10.1134/S0037446624020034",
language = "English",
volume = "65",
pages = "265--278",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "2",

}

RIS

TY - JOUR

T1 - Quasidenseness in and Projective Parallelotopes

AU - Gutman, A. E.

AU - Emelianenkov, I. A.

PY - 2024/3

Y1 - 2024/3

N2 - We establish two new criteria for the closedness of Archimedean cones in countable-dimensional locally convex spacesin terms of projective parallelotopes and projective automorphisms.We also answer some open questions about quasidenseness and quasi-interior.

AB - We establish two new criteria for the closedness of Archimedean cones in countable-dimensional locally convex spacesin terms of projective parallelotopes and projective automorphisms.We also answer some open questions about quasidenseness and quasi-interior.

KW - 517.98

KW - Archimedean ordered vector space

KW - cone

KW - locally convex space

KW - quasi-interior

KW - quasidense set

KW - weak topology

UR - https://www.scopus.com/record/display.uri?eid=2-s2.0-85188526164&origin=inward&txGid=8be4cbff33ee932f006e09ebe017f001

UR - https://www.mendeley.com/catalogue/5a355142-0ce5-31ee-8a77-38f900c44b4a/

U2 - 10.1134/S0037446624020034

DO - 10.1134/S0037446624020034

M3 - Article

VL - 65

SP - 265

EP - 278

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 2

ER -

ID: 61124793