Research output: Contribution to journal › Article › peer-review
Pulse wave travel distance as a novel marker of ventricular-arterial coupling. / Obata, Yurie; Ruzankin, Pavel; Gottschalk, Allan et al.
In: Heart and Vessels, Vol. 33, No. 3, 01.03.2018, p. 279-290.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Pulse wave travel distance as a novel marker of ventricular-arterial coupling
AU - Obata, Yurie
AU - Ruzankin, Pavel
AU - Gottschalk, Allan
AU - Nyhan, Daniel
AU - Berkowitz, Dan E.
AU - Steppan, Jochen
AU - Barodka, Viachaslau
PY - 2018/3/1
Y1 - 2018/3/1
N2 - Each stroke volume ejected by the heart is distributed along the arterial system as a pressure waveform. How far the front of the pressure waveform travels within the arterial system depends both on the pulse wave velocity (PWV) and the ejection time (ET). We tested the hypothesis that ET and PWV are coupled together, in order to produce a pulse wave travel distance (PWTD = PWV × ET) which would match the distance from the heart to the most distant site in the arterial system. The study was conducted in 11 healthy volunteers. We recorded lead II of the ECG along with pulse plethysmography at ear, finger and toe. The ET at the ear and pulse arrival time to each peripheral site were extracted. We then calculated PWV followed by PWTD for each location. Taken into account the individual subject variability PWTDToe in the supine position was 153 cm (95% CI 146–160 cm). It was not different from arterial pathway distance from the heart to the toe (DToe 153 cm). The PWTDFinger and PWTDEar were longer than the distance from the heart to the finger and ear irrespective of body position. ETEar and PWVToe appear to be coupled in healthy subjects to produce a PWTD that is roughly equivalent to the arterial pathway distance to the toe. We propose that PWTD should be evaluated further to test its potential as a noninvasive parameter of ventricular-arterial coupling in subjects with cardiovascular diseases.
AB - Each stroke volume ejected by the heart is distributed along the arterial system as a pressure waveform. How far the front of the pressure waveform travels within the arterial system depends both on the pulse wave velocity (PWV) and the ejection time (ET). We tested the hypothesis that ET and PWV are coupled together, in order to produce a pulse wave travel distance (PWTD = PWV × ET) which would match the distance from the heart to the most distant site in the arterial system. The study was conducted in 11 healthy volunteers. We recorded lead II of the ECG along with pulse plethysmography at ear, finger and toe. The ET at the ear and pulse arrival time to each peripheral site were extracted. We then calculated PWV followed by PWTD for each location. Taken into account the individual subject variability PWTDToe in the supine position was 153 cm (95% CI 146–160 cm). It was not different from arterial pathway distance from the heart to the toe (DToe 153 cm). The PWTDFinger and PWTDEar were longer than the distance from the heart to the finger and ear irrespective of body position. ETEar and PWVToe appear to be coupled in healthy subjects to produce a PWTD that is roughly equivalent to the arterial pathway distance to the toe. We propose that PWTD should be evaluated further to test its potential as a noninvasive parameter of ventricular-arterial coupling in subjects with cardiovascular diseases.
KW - Arterial pathway distance
KW - Ejection time
KW - Pulse wave travel distance
KW - Pulse wave velocity
KW - Ventricular-arterial coupling
KW - COLLABORATIVE TRIAL ACCT
KW - VELOCITY
KW - RISK-FACTORS
KW - CARDIOVASCULAR EVENTS
KW - TIME
KW - AORTIC AUGMENTATION INDEX
KW - INPUT IMPEDANCE
KW - EXCESS PRESSURE
KW - STIFFNESS
KW - HEART-RATE
UR - http://www.scopus.com/inward/record.url?scp=85030330809&partnerID=8YFLogxK
U2 - 10.1007/s00380-017-1058-4
DO - 10.1007/s00380-017-1058-4
M3 - Article
C2 - 28975398
AN - SCOPUS:85030330809
VL - 33
SP - 279
EP - 290
JO - Heart and Vessels
JF - Heart and Vessels
SN - 0910-8327
IS - 3
ER -
ID: 9895192