Standard

Physicochemical Conditions of Crystallization of Rocks from Ultrabasic Massifs of the Siberian Platform. / Simonov, V. A.; Prikhod’ko, V. S.; Vasiliev, Yu R. et al.

In: Russian Journal of Pacific Geology, Vol. 11, No. 6, 01.11.2017, p. 447-468.

Research output: Contribution to journalArticlepeer-review

Harvard

Simonov, VA, Prikhod’ko, VS, Vasiliev, YR & Kotlyarov, AV 2017, 'Physicochemical Conditions of Crystallization of Rocks from Ultrabasic Massifs of the Siberian Platform', Russian Journal of Pacific Geology, vol. 11, no. 6, pp. 447-468. https://doi.org/10.1134/S1819714017060057

APA

Simonov, V. A., Prikhod’ko, V. S., Vasiliev, Y. R., & Kotlyarov, A. V. (2017). Physicochemical Conditions of Crystallization of Rocks from Ultrabasic Massifs of the Siberian Platform. Russian Journal of Pacific Geology, 11(6), 447-468. https://doi.org/10.1134/S1819714017060057

Vancouver

Simonov VA, Prikhod’ko VS, Vasiliev YR, Kotlyarov AV. Physicochemical Conditions of Crystallization of Rocks from Ultrabasic Massifs of the Siberian Platform. Russian Journal of Pacific Geology. 2017 Nov 1;11(6):447-468. doi: 10.1134/S1819714017060057

Author

Simonov, V. A. ; Prikhod’ko, V. S. ; Vasiliev, Yu R. et al. / Physicochemical Conditions of Crystallization of Rocks from Ultrabasic Massifs of the Siberian Platform. In: Russian Journal of Pacific Geology. 2017 ; Vol. 11, No. 6. pp. 447-468.

BibTeX

@article{d6d119fdefb4464f9724a63a414ad698,
title = "Physicochemical Conditions of Crystallization of Rocks from Ultrabasic Massifs of the Siberian Platform",
abstract = "A great volume of original information on the formation of the ultrabasic rocks of the Siberian Platform has been accumulated owing to the study of melt inclusions in Cr-spinels. The inclusions show the general tendencies in the behavior of the magmatic systems during the formation of the ultrabasic massifs of the Siberian Platform, tracing the main evolution trend of decreasing Mg number with SiO2 increase in the melts with subsequent transition from picrites through picrobasalts to basalts. The compositions of the melt inclusions indicate that the crystallization conditions of the rocks of the concentrically zoned massifs (Konder, Inagli, Chad) sharply differ from those of the Guli massif. Numerical modeling using the PETROLOG and PLUTON softwares and data on the composition of inclusions in Cr-spinels yielded maximum crystallization temperatures of the olivines from the dunites of the Konder (1545–1430°C), Inagli (1530–1430°C), Chad (1460–1420°C), and Guli (1520–1420°C) massifs, and those of Cr-spinels from the Konder (1420–1380°C), Inagli (up to 1430°C), Chad (1430–1330°C), and Guli (1410–1370°C) massifs. Modeling of the Guli massif with the PLUTON software using the compositions of the melt inclusions revealed the possible formation of the alkaline rocks at the final reverse stage of the evolution of the picritic magmas (with decrease of SiO2 and alkali accumulation) after termination of olivine crystallization with temperature decrease from 1240–1230°C to 1200–1090°C. Modeling with the PLUTON software showed that the dunites of the Guli massif coexisted with Fe-rich (with moderate TiO2 contents) melts, the crystallization of which led (beginning from 1210°C) to the formation of pyroxenes between cumulate olivine. Further temperature decrease (from 1125°C) with decreasing FeO and TiO2 contents provided the formation of clinopyroxenes of pyroxenites. For the Konder massif, modeling with the PLUTON software indicates the possible formation of kosvites from picrobasaltic magmas beginning from 1350°C and the formation of clinopyroxenites and olivine–diopside rocks from olivine basaltic melts from 1250°C.",
keywords = "Cr-spinels, melt inclusions, physicochemical conditions, Russian Far East, Siberian Platform, ultrabasic massifs, DIAPIRISM, MINERALS, MEIMECHITES, CR-SPINEL, MAGMAS, MELT INCLUSIONS, PETROLOGY, RUSSIA, PROVINCE, GEOCHEMISTRY",
author = "Simonov, {V. A.} and Prikhod{\textquoteright}ko, {V. S.} and Vasiliev, {Yu R.} and Kotlyarov, {A. V.}",
year = "2017",
month = nov,
day = "1",
doi = "10.1134/S1819714017060057",
language = "English",
volume = "11",
pages = "447--468",
journal = "Russian Journal of Pacific Geology",
issn = "1819-7140",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "6",

}

RIS

TY - JOUR

T1 - Physicochemical Conditions of Crystallization of Rocks from Ultrabasic Massifs of the Siberian Platform

AU - Simonov, V. A.

AU - Prikhod’ko, V. S.

AU - Vasiliev, Yu R.

AU - Kotlyarov, A. V.

PY - 2017/11/1

Y1 - 2017/11/1

N2 - A great volume of original information on the formation of the ultrabasic rocks of the Siberian Platform has been accumulated owing to the study of melt inclusions in Cr-spinels. The inclusions show the general tendencies in the behavior of the magmatic systems during the formation of the ultrabasic massifs of the Siberian Platform, tracing the main evolution trend of decreasing Mg number with SiO2 increase in the melts with subsequent transition from picrites through picrobasalts to basalts. The compositions of the melt inclusions indicate that the crystallization conditions of the rocks of the concentrically zoned massifs (Konder, Inagli, Chad) sharply differ from those of the Guli massif. Numerical modeling using the PETROLOG and PLUTON softwares and data on the composition of inclusions in Cr-spinels yielded maximum crystallization temperatures of the olivines from the dunites of the Konder (1545–1430°C), Inagli (1530–1430°C), Chad (1460–1420°C), and Guli (1520–1420°C) massifs, and those of Cr-spinels from the Konder (1420–1380°C), Inagli (up to 1430°C), Chad (1430–1330°C), and Guli (1410–1370°C) massifs. Modeling of the Guli massif with the PLUTON software using the compositions of the melt inclusions revealed the possible formation of the alkaline rocks at the final reverse stage of the evolution of the picritic magmas (with decrease of SiO2 and alkali accumulation) after termination of olivine crystallization with temperature decrease from 1240–1230°C to 1200–1090°C. Modeling with the PLUTON software showed that the dunites of the Guli massif coexisted with Fe-rich (with moderate TiO2 contents) melts, the crystallization of which led (beginning from 1210°C) to the formation of pyroxenes between cumulate olivine. Further temperature decrease (from 1125°C) with decreasing FeO and TiO2 contents provided the formation of clinopyroxenes of pyroxenites. For the Konder massif, modeling with the PLUTON software indicates the possible formation of kosvites from picrobasaltic magmas beginning from 1350°C and the formation of clinopyroxenites and olivine–diopside rocks from olivine basaltic melts from 1250°C.

AB - A great volume of original information on the formation of the ultrabasic rocks of the Siberian Platform has been accumulated owing to the study of melt inclusions in Cr-spinels. The inclusions show the general tendencies in the behavior of the magmatic systems during the formation of the ultrabasic massifs of the Siberian Platform, tracing the main evolution trend of decreasing Mg number with SiO2 increase in the melts with subsequent transition from picrites through picrobasalts to basalts. The compositions of the melt inclusions indicate that the crystallization conditions of the rocks of the concentrically zoned massifs (Konder, Inagli, Chad) sharply differ from those of the Guli massif. Numerical modeling using the PETROLOG and PLUTON softwares and data on the composition of inclusions in Cr-spinels yielded maximum crystallization temperatures of the olivines from the dunites of the Konder (1545–1430°C), Inagli (1530–1430°C), Chad (1460–1420°C), and Guli (1520–1420°C) massifs, and those of Cr-spinels from the Konder (1420–1380°C), Inagli (up to 1430°C), Chad (1430–1330°C), and Guli (1410–1370°C) massifs. Modeling of the Guli massif with the PLUTON software using the compositions of the melt inclusions revealed the possible formation of the alkaline rocks at the final reverse stage of the evolution of the picritic magmas (with decrease of SiO2 and alkali accumulation) after termination of olivine crystallization with temperature decrease from 1240–1230°C to 1200–1090°C. Modeling with the PLUTON software showed that the dunites of the Guli massif coexisted with Fe-rich (with moderate TiO2 contents) melts, the crystallization of which led (beginning from 1210°C) to the formation of pyroxenes between cumulate olivine. Further temperature decrease (from 1125°C) with decreasing FeO and TiO2 contents provided the formation of clinopyroxenes of pyroxenites. For the Konder massif, modeling with the PLUTON software indicates the possible formation of kosvites from picrobasaltic magmas beginning from 1350°C and the formation of clinopyroxenites and olivine–diopside rocks from olivine basaltic melts from 1250°C.

KW - Cr-spinels

KW - melt inclusions

KW - physicochemical conditions

KW - Russian Far East

KW - Siberian Platform

KW - ultrabasic massifs

KW - DIAPIRISM

KW - MINERALS

KW - MEIMECHITES

KW - CR-SPINEL

KW - MAGMAS

KW - MELT INCLUSIONS

KW - PETROLOGY

KW - RUSSIA

KW - PROVINCE

KW - GEOCHEMISTRY

UR - http://www.scopus.com/inward/record.url?scp=85042421271&partnerID=8YFLogxK

U2 - 10.1134/S1819714017060057

DO - 10.1134/S1819714017060057

M3 - Article

AN - SCOPUS:85042421271

VL - 11

SP - 447

EP - 468

JO - Russian Journal of Pacific Geology

JF - Russian Journal of Pacific Geology

SN - 1819-7140

IS - 6

ER -

ID: 10032505