Research output: Contribution to journal › Article › peer-review
Permutation Binomial Functions over Finite Fields. / Miloserdov, A. V.
In: Journal of Applied and Industrial Mathematics, Vol. 12, No. 4, 01.10.2018, p. 694-705.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - Permutation Binomial Functions over Finite Fields
AU - Miloserdov, A. V.
N1 - Publisher Copyright: © 2018, Pleiades Publishing, Ltd.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - We consider binomial functions over a finite field of order 2n. Some necessary condition is found for such a binomial function to be a permutation. It is proved that there are no permutation binomial functions in the case that 2n − 1 is prime. Permutation binomial functions are constructed in the case when n is composite and found for n ≥ 8.
AB - We consider binomial functions over a finite field of order 2n. Some necessary condition is found for such a binomial function to be a permutation. It is proved that there are no permutation binomial functions in the case that 2n − 1 is prime. Permutation binomial functions are constructed in the case when n is composite and found for n ≥ 8.
KW - APN function
KW - binomial function
KW - permutation
KW - vectorial Boolean function
UR - http://www.scopus.com/inward/record.url?scp=85058137311&partnerID=8YFLogxK
U2 - 10.1134/S1990478918040105
DO - 10.1134/S1990478918040105
M3 - Article
AN - SCOPUS:85058137311
VL - 12
SP - 694
EP - 705
JO - Journal of Applied and Industrial Mathematics
JF - Journal of Applied and Industrial Mathematics
SN - 1990-4789
IS - 4
ER -
ID: 17831259