Standard

Permutation Binomial Functions over Finite Fields. / Miloserdov, A. V.

In: Journal of Applied and Industrial Mathematics, Vol. 12, No. 4, 01.10.2018, p. 694-705.

Research output: Contribution to journalArticlepeer-review

Harvard

Miloserdov, AV 2018, 'Permutation Binomial Functions over Finite Fields', Journal of Applied and Industrial Mathematics, vol. 12, no. 4, pp. 694-705. https://doi.org/10.1134/S1990478918040105

APA

Miloserdov, A. V. (2018). Permutation Binomial Functions over Finite Fields. Journal of Applied and Industrial Mathematics, 12(4), 694-705. https://doi.org/10.1134/S1990478918040105

Vancouver

Miloserdov AV. Permutation Binomial Functions over Finite Fields. Journal of Applied and Industrial Mathematics. 2018 Oct 1;12(4):694-705. doi: 10.1134/S1990478918040105

Author

Miloserdov, A. V. / Permutation Binomial Functions over Finite Fields. In: Journal of Applied and Industrial Mathematics. 2018 ; Vol. 12, No. 4. pp. 694-705.

BibTeX

@article{1c26b040a9cd49d3b9162f6593e9d8a5,
title = "Permutation Binomial Functions over Finite Fields",
abstract = "We consider binomial functions over a finite field of order 2n. Some necessary condition is found for such a binomial function to be a permutation. It is proved that there are no permutation binomial functions in the case that 2n − 1 is prime. Permutation binomial functions are constructed in the case when n is composite and found for n ≥ 8.",
keywords = "APN function, binomial function, permutation, vectorial Boolean function",
author = "Miloserdov, {A. V.}",
note = "Publisher Copyright: {\textcopyright} 2018, Pleiades Publishing, Ltd.",
year = "2018",
month = oct,
day = "1",
doi = "10.1134/S1990478918040105",
language = "English",
volume = "12",
pages = "694--705",
journal = "Journal of Applied and Industrial Mathematics",
issn = "1990-4789",
publisher = "Maik Nauka-Interperiodica Publishing",
number = "4",

}

RIS

TY - JOUR

T1 - Permutation Binomial Functions over Finite Fields

AU - Miloserdov, A. V.

N1 - Publisher Copyright: © 2018, Pleiades Publishing, Ltd.

PY - 2018/10/1

Y1 - 2018/10/1

N2 - We consider binomial functions over a finite field of order 2n. Some necessary condition is found for such a binomial function to be a permutation. It is proved that there are no permutation binomial functions in the case that 2n − 1 is prime. Permutation binomial functions are constructed in the case when n is composite and found for n ≥ 8.

AB - We consider binomial functions over a finite field of order 2n. Some necessary condition is found for such a binomial function to be a permutation. It is proved that there are no permutation binomial functions in the case that 2n − 1 is prime. Permutation binomial functions are constructed in the case when n is composite and found for n ≥ 8.

KW - APN function

KW - binomial function

KW - permutation

KW - vectorial Boolean function

UR - http://www.scopus.com/inward/record.url?scp=85058137311&partnerID=8YFLogxK

U2 - 10.1134/S1990478918040105

DO - 10.1134/S1990478918040105

M3 - Article

AN - SCOPUS:85058137311

VL - 12

SP - 694

EP - 705

JO - Journal of Applied and Industrial Mathematics

JF - Journal of Applied and Industrial Mathematics

SN - 1990-4789

IS - 4

ER -

ID: 17831259