Standard

Periodic locally nilpotent groups of finite c-dimension. / Buturlakin, Alexander; Devyatkova, I. E.

In: Siberian Electronic Mathematical Reports, Vol. 17, 2020, p. 1100-1105.

Research output: Contribution to journalArticlepeer-review

Harvard

Buturlakin, A & Devyatkova, IE 2020, 'Periodic locally nilpotent groups of finite c-dimension', Siberian Electronic Mathematical Reports, vol. 17, pp. 1100-1105. https://doi.org/10.33048/semi.2020.17.083

APA

Buturlakin, A., & Devyatkova, I. E. (2020). Periodic locally nilpotent groups of finite c-dimension. Siberian Electronic Mathematical Reports, 17, 1100-1105. https://doi.org/10.33048/semi.2020.17.083

Vancouver

Buturlakin A, Devyatkova IE. Periodic locally nilpotent groups of finite c-dimension. Siberian Electronic Mathematical Reports. 2020;17:1100-1105. doi: 10.33048/semi.2020.17.083

Author

Buturlakin, Alexander ; Devyatkova, I. E. / Periodic locally nilpotent groups of finite c-dimension. In: Siberian Electronic Mathematical Reports. 2020 ; Vol. 17. pp. 1100-1105.

BibTeX

@article{261543e89e6c4642b7a06751b0e88dbb,
title = "Periodic locally nilpotent groups of finite c-dimension",
abstract = "According to Bryant's theorem a periodic locally nilpotent group satisfying minimal condition on centralizers is virtually nilpotent. The c-dimension of a group is the supremum of lengths of chains of centralizers. We bound the index of the nilpotent radical of a locally nilpotent p-group of finite c-dimension k in terms of k and p.",
keywords = "c-dimension, locally nilpotent p-group, periodic locally nilpotent group",
author = "Alexander Buturlakin and Devyatkova, {I. E.}",
note = "Funding Information: c-dimension. {\textcopyright} 2020 Buturlakin A.A., Devyatkova I.E. The work is supported by Russian Science Foundation (project 19-11-00039). Received November, 29, 2019, published August, 18, 2020.",
year = "2020",
doi = "10.33048/semi.2020.17.083",
language = "English",
volume = "17",
pages = "1100--1105",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - Periodic locally nilpotent groups of finite c-dimension

AU - Buturlakin, Alexander

AU - Devyatkova, I. E.

N1 - Funding Information: c-dimension. © 2020 Buturlakin A.A., Devyatkova I.E. The work is supported by Russian Science Foundation (project 19-11-00039). Received November, 29, 2019, published August, 18, 2020.

PY - 2020

Y1 - 2020

N2 - According to Bryant's theorem a periodic locally nilpotent group satisfying minimal condition on centralizers is virtually nilpotent. The c-dimension of a group is the supremum of lengths of chains of centralizers. We bound the index of the nilpotent radical of a locally nilpotent p-group of finite c-dimension k in terms of k and p.

AB - According to Bryant's theorem a periodic locally nilpotent group satisfying minimal condition on centralizers is virtually nilpotent. The c-dimension of a group is the supremum of lengths of chains of centralizers. We bound the index of the nilpotent radical of a locally nilpotent p-group of finite c-dimension k in terms of k and p.

KW - c-dimension

KW - locally nilpotent p-group

KW - periodic locally nilpotent group

UR - http://www.scopus.com/inward/record.url?scp=85099213627&partnerID=8YFLogxK

U2 - 10.33048/semi.2020.17.083

DO - 10.33048/semi.2020.17.083

M3 - Article

AN - SCOPUS:85099213627

VL - 17

SP - 1100

EP - 1105

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 27487338