Research output: Contribution to journal › Article › peer-review
PANDA Phase One: PANDA collaboration. / The PANDA Collaboration.
In: European Physical Journal A, Vol. 57, No. 6, 184, 06.2021.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - PANDA Phase One: PANDA collaboration
AU - The PANDA Collaboration
AU - Barucca, G.
AU - Davì, F.
AU - Lancioni, G.
AU - Mengucci, P.
AU - Montalto, L.
AU - Natali, P. P.
AU - Paone, N.
AU - Rinaldi, D.
AU - Scalise, L.
AU - Krusche, B.
AU - Steinacher, M.
AU - Liu, Z.
AU - Liu, C.
AU - Liu, B.
AU - Shen, X.
AU - Sun, S.
AU - Zhao, G.
AU - Zhao, J.
AU - Albrecht, M.
AU - Alkakhi, W.
AU - Bökelmann, S.
AU - Coen, S.
AU - Feldbauer, F.
AU - Fink, M.
AU - Frech, J.
AU - Freudenreich, V.
AU - Fritsch, M.
AU - Grochowski, J.
AU - Hagdorn, R.
AU - Heinsius, F. H.
AU - Held, T.
AU - Holtmann, T.
AU - Keshk, I.
AU - Koch, H.
AU - Kopf, B.
AU - Kümmel, M.
AU - Küßner, M.
AU - Li, J.
AU - Linzen, L.
AU - Maldaner, S.
AU - Oppotsch, J.
AU - Barnyakov, A. Yu
AU - Beloborodov, K.
AU - Blinov, V. E.
AU - Kuyanov, I. A.
AU - Pivovarov, S.
AU - Tikhonov, Y.
AU - Blinov, A. E.
AU - Kononov, S.
AU - Kravchenko, E. A.
N1 - Funding Information: We acknowledge financial support from the Bhabha Atomic Research Centre (BARC) and the Indian Institute of Technology Bombay, India; the Bundesministerium für Bildung und Forschung (BMBF), Germany; the Carl-Zeiss-Stiftung 21-0563-2.8/122/1 and 21-0563-2.8/131/1, Mainz, Germany; the CNRS/IN2P3 and the Université Paris-Sud, France; the Czech Ministry (MEYS) grants LM2015049, CZ.02.1.01/0.0/0.0/16 and 013/0001677, the Deutsche Forschungsgemeinschaft (DFG), Germany; the Deutscher Akademischer Austauschdienst (DAAD), Germany; the European Union’s Horizon 2020 research and innovation programme under grant agreement No 824093. the Forschungszentrum Jülich, Germany; the Gesellschaft für Schwerionenforschung GmbH (GSI), Darmstadt, Germany; the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; the INTAS, European Commission funding; the Institute of High Energy Physics (IHEP) and the Chinese Academy of Sciences, Beijing, China; the Istituto Nazionale di Fisica Nucleare (INFN), Italy; the Ministerio de Educacion y Ciencia (MEC) under grant FPA2006-12120-C03-02; the Polish Ministry of Science and Higher Education (MNiSW) grant No. 2593/7, PR UE/2012/2, and the National Science Centre (NCN) DEC-2013/09/N/ST2/02180, Poland; the State Atomic Energy Corporation Rosatom, National Research Center Kurchatov Institute, Russia; the Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (SNF), Swiss; the Science and Technology Facilities Council (STFC), British funding agency, Great Britain; the Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant No. 119F094 the Stefan Meyer Institut für Subatomare Physik and the Österreichische Akademie der Wissenschaften, Wien, Austria; the Swedish Research Council and the Knut and Alice Wallenberg Foundation, Sweden. Funding Information: We acknowledge the support of the Theory Advisory Group (ThAG) of PANDA and we value the various discussions that took place with the ThAG sharpening the physics programme of PANDA. We appreciate the comments and feedback we received from Gunnar Bali, Nora Brambilla, Stan Brodsky, Alexei Larionov, Horst Lenske, Stefan Leupold, Ulf Mei?ner, Simone Pacetti, Mark Strikman, and Lech Szymanowski. We acknowledge financial support from the Bhabha Atomic Research Centre (BARC) and the Indian Institute of Technology Bombay, India; the Bundesministerium f?r Bildung und Forschung (BMBF), Germany; the Carl-Zeiss-Stiftung 21-0563-2.8/122/1 and 21-0563-2.8/131/1, Mainz, Germany; the CNRS/IN2P3 and the Universit? Paris-Sud, France; the Czech Ministry (MEYS) grants LM2015049, CZ.02.1.01/0.0/0.0/16 and 013/0001677, the Deutsche Forschungsgemeinschaft (DFG), Germany; the Deutscher Akademischer Austauschdienst (DAAD), Germany; the European Union?s Horizon 2020 research and innovation programme under grant agreement No 824093. the Forschungszentrum J?lich, Germany; the Gesellschaft f?r Schwerionenforschung GmbH (GSI), Darmstadt, Germany; the Helmholtz-Gemeinschaft Deutscher Forschungszentren (HGF), Germany; the INTAS, European Commission funding; the Institute of High Energy Physics (IHEP) and the Chinese Academy of Sciences, Beijing, China; the Istituto Nazionale di Fisica Nucleare (INFN), Italy; the Ministerio de Educacion y Ciencia (MEC) under grant FPA2006-12120-C03-02; the Polish Ministry of Science and Higher Education (MNiSW) grant No. 2593/7, PR UE/2012/2, and the National Science Centre (NCN) DEC-2013/09/N/ST2/02180, Poland; the State Atomic Energy Corporation Rosatom, National Research Center Kurchatov Institute, Russia; the Schweizerischer Nationalfonds zur F?rderung der Wissenschaftlichen Forschung (SNF), Swiss; the Science and Technology Facilities Council (STFC), British funding agency, Great Britain; the Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant No. 119F094 the Stefan Meyer Institut f?r Subatomare Physik and the ?sterreichische Akademie der Wissenschaften, Wien, Austria; the Swedish Research Council and the Knut and Alice Wallenberg Foundation, Sweden. Publisher Copyright: © 2021, The Author(s).
PY - 2021/6
Y1 - 2021/6
N2 - The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of hadron-, nuclear- and atomic physics experiments. The future antiProton ANnihilations at DArmstadt (PANDA or P ¯ ANDA) experiment at FAIR will offer a broad physics programme, covering different aspects of the strong interaction. Understanding the latter in the non-perturbative regime remains one of the greatest challenges in contemporary physics. The antiproton–nucleon interaction studied with PANDA provides crucial tests in this area. Furthermore, the high-intensity, low-energy domain of PANDA allows for searches for physics beyond the Standard Model, e.g. through high precision symmetry tests. This paper takes into account a staged approach for the detector setup and for the delivered luminosity from the accelerator. The available detector setup at the time of the delivery of the first antiproton beams in the HESR storage ring is referred to as the Phase One setup. The physics programme that is achievable during Phase One is outlined in this paper.
AB - The Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany, provides unique possibilities for a new generation of hadron-, nuclear- and atomic physics experiments. The future antiProton ANnihilations at DArmstadt (PANDA or P ¯ ANDA) experiment at FAIR will offer a broad physics programme, covering different aspects of the strong interaction. Understanding the latter in the non-perturbative regime remains one of the greatest challenges in contemporary physics. The antiproton–nucleon interaction studied with PANDA provides crucial tests in this area. Furthermore, the high-intensity, low-energy domain of PANDA allows for searches for physics beyond the Standard Model, e.g. through high precision symmetry tests. This paper takes into account a staged approach for the detector setup and for the delivered luminosity from the accelerator. The available detector setup at the time of the delivery of the first antiproton beams in the HESR storage ring is referred to as the Phase One setup. The physics programme that is achievable during Phase One is outlined in this paper.
UR - http://www.scopus.com/inward/record.url?scp=85108111271&partnerID=8YFLogxK
U2 - 10.1140/epja/s10050-021-00475-y
DO - 10.1140/epja/s10050-021-00475-y
M3 - Article
AN - SCOPUS:85108111271
VL - 57
JO - European Physical Journal A
JF - European Physical Journal A
SN - 1434-6001
IS - 6
M1 - 184
ER -
ID: 34032916