Standard

Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers. / Poborchii, Vladimir; Groenen, Jesse; Geshev, Pavel I. et al.

In: Nanoscale, Vol. 13, No. 21, 07.06.2021, p. 9686-9697.

Research output: Contribution to journalArticlepeer-review

Harvard

Poborchii, V, Groenen, J, Geshev, PI, Hattori, J, Chang, WH, Ishii, H, Irisawa, T & Maeda, T 2021, 'Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers', Nanoscale, vol. 13, no. 21, pp. 9686-9697. https://doi.org/10.1039/d1nr01355f

APA

Poborchii, V., Groenen, J., Geshev, P. I., Hattori, J., Chang, W. H., Ishii, H., Irisawa, T., & Maeda, T. (2021). Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers. Nanoscale, 13(21), 9686-9697. https://doi.org/10.1039/d1nr01355f

Vancouver

Poborchii V, Groenen J, Geshev PI, Hattori J, Chang WH, Ishii H et al. Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers. Nanoscale. 2021 Jun 7;13(21):9686-9697. doi: 10.1039/d1nr01355f

Author

Poborchii, Vladimir ; Groenen, Jesse ; Geshev, Pavel I. et al. / Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers. In: Nanoscale. 2021 ; Vol. 13, No. 21. pp. 9686-9697.

BibTeX

@article{2a84bfdf9d454777948b25f386e9af75,
title = "Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers",
abstract = "Nanoelectronics require semiconductor nanomaterials with high electron mobility like Ge nanolayers. Phonon and electron states in nanolayers undergo size-dependent changes induced by confinement and surface effects. Confined electrons and acoustic phonons determine layer optical, electric and thermal properties. Despite scientific and practical significance, their experimental studies in individual nanolayers are still lacking. Thanks to recent progress in the fabrication of high-quality nanolayers, here, we report the thickness dependencies of Raman spectra of acoustic phonons and optical spectra of electrons confined in germanium-on-insulator (GeOI) nanolayers with thicknesses TGeOI = 1-20 nm. We show that for TGeOI > 5 nm, both GeOI acoustic phonon Raman spectra and the E1 electron energy gap display dependencies on TGeOI which are reasonably described by the corresponding phonon and electron confinement theories. Accordingly, TGeOI can be probed using acoustic phonon Raman spectra at TGeOI > 5 nm. However, both confinement theories fail to describe GeOI thickness dependencies at TGeOI < 5 nm. We attribute this discrepancy to an increased influence of the Ge-GeO2 interface disorder with TGeOI reduction. The acoustic phonon data suggest a decrease of Ge normal-to-the-layer longitudinal sound velocity. Generation of interface-disorder-induced dispersionless phonons might contribute to this. The change in GeOI phonon properties at TGeOI < 5 nm might influence E1(TGeOI) dependence via a change in the GeOI electron-phonon interaction. We demonstrate that the Al2O3 coating improves the agreement between experimental and confinement theories, probably, via reduction of disorder at the Ge-GeOx-Al2O3-interface. Our results are important for control of nanolayer-confined electrons and phonons with benefits for modern and future nanoelectronic devices. This journal is ",
author = "Vladimir Poborchii and Jesse Groenen and Geshev, {Pavel I.} and Junichi Hattori and Chang, {Wen Hsin} and Hiroyuki Ishii and Toshifumi Irisawa and Tatsuro Maeda",
note = "Publisher Copyright: {\textcopyright} The Royal Society of Chemistry.",
year = "2021",
month = jun,
day = "7",
doi = "10.1039/d1nr01355f",
language = "English",
volume = "13",
pages = "9686--9697",
journal = "Nanoscale",
issn = "2040-3364",
publisher = "Royal Society of Chemistry",
number = "21",

}

RIS

TY - JOUR

T1 - Optical study of electron and acoustic phonon confinement in ultrathin-body germanium-on-insulator nanolayers

AU - Poborchii, Vladimir

AU - Groenen, Jesse

AU - Geshev, Pavel I.

AU - Hattori, Junichi

AU - Chang, Wen Hsin

AU - Ishii, Hiroyuki

AU - Irisawa, Toshifumi

AU - Maeda, Tatsuro

N1 - Publisher Copyright: © The Royal Society of Chemistry.

PY - 2021/6/7

Y1 - 2021/6/7

N2 - Nanoelectronics require semiconductor nanomaterials with high electron mobility like Ge nanolayers. Phonon and electron states in nanolayers undergo size-dependent changes induced by confinement and surface effects. Confined electrons and acoustic phonons determine layer optical, electric and thermal properties. Despite scientific and practical significance, their experimental studies in individual nanolayers are still lacking. Thanks to recent progress in the fabrication of high-quality nanolayers, here, we report the thickness dependencies of Raman spectra of acoustic phonons and optical spectra of electrons confined in germanium-on-insulator (GeOI) nanolayers with thicknesses TGeOI = 1-20 nm. We show that for TGeOI > 5 nm, both GeOI acoustic phonon Raman spectra and the E1 electron energy gap display dependencies on TGeOI which are reasonably described by the corresponding phonon and electron confinement theories. Accordingly, TGeOI can be probed using acoustic phonon Raman spectra at TGeOI > 5 nm. However, both confinement theories fail to describe GeOI thickness dependencies at TGeOI < 5 nm. We attribute this discrepancy to an increased influence of the Ge-GeO2 interface disorder with TGeOI reduction. The acoustic phonon data suggest a decrease of Ge normal-to-the-layer longitudinal sound velocity. Generation of interface-disorder-induced dispersionless phonons might contribute to this. The change in GeOI phonon properties at TGeOI < 5 nm might influence E1(TGeOI) dependence via a change in the GeOI electron-phonon interaction. We demonstrate that the Al2O3 coating improves the agreement between experimental and confinement theories, probably, via reduction of disorder at the Ge-GeOx-Al2O3-interface. Our results are important for control of nanolayer-confined electrons and phonons with benefits for modern and future nanoelectronic devices. This journal is

AB - Nanoelectronics require semiconductor nanomaterials with high electron mobility like Ge nanolayers. Phonon and electron states in nanolayers undergo size-dependent changes induced by confinement and surface effects. Confined electrons and acoustic phonons determine layer optical, electric and thermal properties. Despite scientific and practical significance, their experimental studies in individual nanolayers are still lacking. Thanks to recent progress in the fabrication of high-quality nanolayers, here, we report the thickness dependencies of Raman spectra of acoustic phonons and optical spectra of electrons confined in germanium-on-insulator (GeOI) nanolayers with thicknesses TGeOI = 1-20 nm. We show that for TGeOI > 5 nm, both GeOI acoustic phonon Raman spectra and the E1 electron energy gap display dependencies on TGeOI which are reasonably described by the corresponding phonon and electron confinement theories. Accordingly, TGeOI can be probed using acoustic phonon Raman spectra at TGeOI > 5 nm. However, both confinement theories fail to describe GeOI thickness dependencies at TGeOI < 5 nm. We attribute this discrepancy to an increased influence of the Ge-GeO2 interface disorder with TGeOI reduction. The acoustic phonon data suggest a decrease of Ge normal-to-the-layer longitudinal sound velocity. Generation of interface-disorder-induced dispersionless phonons might contribute to this. The change in GeOI phonon properties at TGeOI < 5 nm might influence E1(TGeOI) dependence via a change in the GeOI electron-phonon interaction. We demonstrate that the Al2O3 coating improves the agreement between experimental and confinement theories, probably, via reduction of disorder at the Ge-GeOx-Al2O3-interface. Our results are important for control of nanolayer-confined electrons and phonons with benefits for modern and future nanoelectronic devices. This journal is

UR - http://www.scopus.com/inward/record.url?scp=85107523656&partnerID=8YFLogxK

U2 - 10.1039/d1nr01355f

DO - 10.1039/d1nr01355f

M3 - Article

C2 - 34018526

AN - SCOPUS:85107523656

VL - 13

SP - 9686

EP - 9697

JO - Nanoscale

JF - Nanoscale

SN - 2040-3364

IS - 21

ER -

ID: 34030993