Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
Optical pulses propagating within SNAP microresonators on the surface of optical fibers. / Han, Zhiyong; Klotz, Emile; Vatnik, Hya D. et al.
2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019. Institute of Electrical and Electronics Engineers Inc., 2019. 8871945 (2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019).Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
}
TY - GEN
T1 - Optical pulses propagating within SNAP microresonators on the surface of optical fibers
AU - Han, Zhiyong
AU - Klotz, Emile
AU - Vatnik, Hya D.
AU - Churkin, Dmitry V.
N1 - Publisher Copyright: © 2019 IEEE.
PY - 2019/6/1
Y1 - 2019/6/1
N2 - Among the various types of microresonators, cylindrical microresonators based on optical fibers turned out to be a promising object for future applications. It was shown that the manufacturing accuracy of standard telecommunication optical fibers and the quality of their surface are high enough to excite high-quality whispering gallery (WGM) modes in their cladding [1]. Microresonators of this type are distinguished by low cost and reliability at a sufficiently high quality factor. In addition, the ability to control the WGM propagation along the fiber axis by introducing controlled radius variations allows creating fundamentally new photonic devices based on microresonators, such as delay lines [2], optical fluid devices, or others [3]. Here we study the features of the propagation of optical pulses within whispering gallery modes of a cladding of an optical fiber. We experimentally demonstrated the possibility to transmit pulses as far as several millimeters along the fiber axis and have measured their propagation speed. We have also utilized the pulse excitation for time domain reflectometry to measure a distance between the excitation point and the fiber cleave.
AB - Among the various types of microresonators, cylindrical microresonators based on optical fibers turned out to be a promising object for future applications. It was shown that the manufacturing accuracy of standard telecommunication optical fibers and the quality of their surface are high enough to excite high-quality whispering gallery (WGM) modes in their cladding [1]. Microresonators of this type are distinguished by low cost and reliability at a sufficiently high quality factor. In addition, the ability to control the WGM propagation along the fiber axis by introducing controlled radius variations allows creating fundamentally new photonic devices based on microresonators, such as delay lines [2], optical fluid devices, or others [3]. Here we study the features of the propagation of optical pulses within whispering gallery modes of a cladding of an optical fiber. We experimentally demonstrated the possibility to transmit pulses as far as several millimeters along the fiber axis and have measured their propagation speed. We have also utilized the pulse excitation for time domain reflectometry to measure a distance between the excitation point and the fiber cleave.
UR - http://www.scopus.com/inward/record.url?scp=85074661254&partnerID=8YFLogxK
U2 - 10.1109/CLEOE-EQEC.2019.8871945
DO - 10.1109/CLEOE-EQEC.2019.8871945
M3 - Conference contribution
T3 - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
BT - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
PB - Institute of Electrical and Electronics Engineers Inc.
T2 - 2019 Conference on Lasers and Electro-Optics Europe and European Quantum Electronics Conference, CLEO/Europe-EQEC 2019
Y2 - 23 June 2019 through 27 June 2019
ER -
ID: 22317935