Standard

On the minimum supports of some eigenfunctions in the Doob graphs. / Bespalov, Evgeny Andreevich.

In: Сибирские электронные математические известия, Vol. 15, 01.01.2018, p. 258-266.

Research output: Contribution to journalArticlepeer-review

Harvard

Bespalov, EA 2018, 'On the minimum supports of some eigenfunctions in the Doob graphs', Сибирские электронные математические известия, vol. 15, pp. 258-266. https://doi.org/10.17377/semi.2018.15.024

APA

Bespalov, E. A. (2018). On the minimum supports of some eigenfunctions in the Doob graphs. Сибирские электронные математические известия, 15, 258-266. https://doi.org/10.17377/semi.2018.15.024

Vancouver

Bespalov EA. On the minimum supports of some eigenfunctions in the Doob graphs. Сибирские электронные математические известия. 2018 Jan 1;15:258-266. doi: 10.17377/semi.2018.15.024

Author

Bespalov, Evgeny Andreevich. / On the minimum supports of some eigenfunctions in the Doob graphs. In: Сибирские электронные математические известия. 2018 ; Vol. 15. pp. 258-266.

BibTeX

@article{a2448d6e15ab48e9843e4c34b9d75d08,
title = "On the minimum supports of some eigenfunctions in the Doob graphs",
abstract = "We prove that the minimum size of the support of an eigenfunction in the Doob graph D(m, n) corresponding to the second largest eigenvalue is 6 · 42m+n-2, and obtain characterisation of all eigenfunctions with minimum support. Similar results, with the minimum support size 22m+n, are obtained for the minimum eigenvalue of D(m, n).",
keywords = "Doob graph, Eigenfunction, Minimum support",
author = "Bespalov, {Evgeny Andreevich}",
year = "2018",
month = jan,
day = "1",
doi = "10.17377/semi.2018.15.024",
language = "English",
volume = "15",
pages = "258--266",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - On the minimum supports of some eigenfunctions in the Doob graphs

AU - Bespalov, Evgeny Andreevich

PY - 2018/1/1

Y1 - 2018/1/1

N2 - We prove that the minimum size of the support of an eigenfunction in the Doob graph D(m, n) corresponding to the second largest eigenvalue is 6 · 42m+n-2, and obtain characterisation of all eigenfunctions with minimum support. Similar results, with the minimum support size 22m+n, are obtained for the minimum eigenvalue of D(m, n).

AB - We prove that the minimum size of the support of an eigenfunction in the Doob graph D(m, n) corresponding to the second largest eigenvalue is 6 · 42m+n-2, and obtain characterisation of all eigenfunctions with minimum support. Similar results, with the minimum support size 22m+n, are obtained for the minimum eigenvalue of D(m, n).

KW - Doob graph

KW - Eigenfunction

KW - Minimum support

UR - http://www.scopus.com/inward/record.url?scp=85058231756&partnerID=8YFLogxK

U2 - 10.17377/semi.2018.15.024

DO - 10.17377/semi.2018.15.024

M3 - Article

AN - SCOPUS:85058231756

VL - 15

SP - 258

EP - 266

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 18185087