Standard

On the maximal length of a snake in hypercubes of small dimension. / Emelyanov, Pavel G.; Lukito, Agung.

In: Discrete Mathematics, Vol. 218, No. 1-3, 06.05.2000, p. 51-59.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Emelyanov PG, Lukito A. On the maximal length of a snake in hypercubes of small dimension. Discrete Mathematics. 2000 May 6;218(1-3):51-59. doi: 10.1016/S0012-365X(99)00335-0

Author

Emelyanov, Pavel G. ; Lukito, Agung. / On the maximal length of a snake in hypercubes of small dimension. In: Discrete Mathematics. 2000 ; Vol. 218, No. 1-3. pp. 51-59.

BibTeX

@article{b0ac784ddfbe402bb04a55d5f309302e,
title = "On the maximal length of a snake in hypercubes of small dimension",
abstract = "A new upper bound is presented for the length of a snake in a hypercube of dimension n. This bound is better than all bounds derived thusfar for 37≤n≤19079.",
keywords = "Chordless cycle, Four-cycle, Snake-in-the-box code, Upper bound",
author = "Emelyanov, {Pavel G.} and Agung Lukito",
year = "2000",
month = may,
day = "6",
doi = "10.1016/S0012-365X(99)00335-0",
language = "English",
volume = "218",
pages = "51--59",
journal = "Discrete Mathematics",
issn = "0012-365X",
publisher = "Elsevier",
number = "1-3",

}

RIS

TY - JOUR

T1 - On the maximal length of a snake in hypercubes of small dimension

AU - Emelyanov, Pavel G.

AU - Lukito, Agung

PY - 2000/5/6

Y1 - 2000/5/6

N2 - A new upper bound is presented for the length of a snake in a hypercube of dimension n. This bound is better than all bounds derived thusfar for 37≤n≤19079.

AB - A new upper bound is presented for the length of a snake in a hypercube of dimension n. This bound is better than all bounds derived thusfar for 37≤n≤19079.

KW - Chordless cycle

KW - Four-cycle

KW - Snake-in-the-box code

KW - Upper bound

UR - http://www.scopus.com/inward/record.url?scp=0003214372&partnerID=8YFLogxK

U2 - 10.1016/S0012-365X(99)00335-0

DO - 10.1016/S0012-365X(99)00335-0

M3 - Article

AN - SCOPUS:0003214372

VL - 218

SP - 51

EP - 59

JO - Discrete Mathematics

JF - Discrete Mathematics

SN - 0012-365X

IS - 1-3

ER -

ID: 14280452