Research output: Contribution to journal › Article › peer-review
On the differential equivalence of APN functions. / Gorodilova, Anastasiya.
In: Cryptography and Communications, Vol. 11, No. 4, 15.07.2019, p. 793-813.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On the differential equivalence of APN functions
AU - Gorodilova, Anastasiya
N1 - Publisher Copyright: © 2018, Springer Science+Business Media, LLC, part of Springer Nature.
PY - 2019/7/15
Y1 - 2019/7/15
N2 - Carlet et al. (Des. Codes Cryptogr. 15, 125–156, 1998) defined the associated Boolean function γF(a,b) in 2n variables for a given vectorial Boolean function F from F2n to itself. It takes value 1 if a≠0 and equation F(x) + F(x + a) = b has solutions. This article defines the differentially equivalent functions as vectorial functions having equal associated Boolean functions. It is an open problem of great interest to describe the differential equivalence class for a given Almost Perfect Nonlinear (APN) function. We determined that each quadratic APN function G in n variables, n ≤ 6, that is differentially equivalent to a given quadratic APN function F, can be represented as G = F + A, where A is affine. For the APN Gold function F, we completely described all affine functions A such that F and F + A are differentially equivalent. This result implies that the class of APN Gold functions up to EA-equivalence contains the first infinite family of functions, whose differential equivalence class is non-trivial.
AB - Carlet et al. (Des. Codes Cryptogr. 15, 125–156, 1998) defined the associated Boolean function γF(a,b) in 2n variables for a given vectorial Boolean function F from F2n to itself. It takes value 1 if a≠0 and equation F(x) + F(x + a) = b has solutions. This article defines the differentially equivalent functions as vectorial functions having equal associated Boolean functions. It is an open problem of great interest to describe the differential equivalence class for a given Almost Perfect Nonlinear (APN) function. We determined that each quadratic APN function G in n variables, n ≤ 6, that is differentially equivalent to a given quadratic APN function F, can be represented as G = F + A, where A is affine. For the APN Gold function F, we completely described all affine functions A such that F and F + A are differentially equivalent. This result implies that the class of APN Gold functions up to EA-equivalence contains the first infinite family of functions, whose differential equivalence class is non-trivial.
KW - Almost perfect nonlinear function
KW - Boolean function
KW - Crooked function
KW - Differential equivalence
KW - Linear spectrum
KW - PERFECT
UR - http://www.scopus.com/inward/record.url?scp=85068152651&partnerID=8YFLogxK
U2 - 10.1007/s12095-018-0329-y
DO - 10.1007/s12095-018-0329-y
M3 - Article
AN - SCOPUS:85068152651
VL - 11
SP - 793
EP - 813
JO - Cryptography and Communications
JF - Cryptography and Communications
SN - 1936-2447
IS - 4
ER -
ID: 20710636