Standard

On the convergence of the Luzin integral and its analogues. / Knizhov, Kirill Igorevich; Podvigin, Ivan Viktorovich.

In: Сибирские электронные математические известия, Vol. 16, 01.01.2019, p. 85-95.

Research output: Contribution to journalArticlepeer-review

Harvard

Knizhov, KI & Podvigin, IV 2019, 'On the convergence of the Luzin integral and its analogues', Сибирские электронные математические известия, vol. 16, pp. 85-95. https://doi.org/10.33048/semi.2019.16.004

APA

Knizhov, K. I., & Podvigin, I. V. (2019). On the convergence of the Luzin integral and its analogues. Сибирские электронные математические известия, 16, 85-95. https://doi.org/10.33048/semi.2019.16.004

Vancouver

Knizhov KI, Podvigin IV. On the convergence of the Luzin integral and its analogues. Сибирские электронные математические известия. 2019 Jan 1;16:85-95. doi: 10.33048/semi.2019.16.004

Author

Knizhov, Kirill Igorevich ; Podvigin, Ivan Viktorovich. / On the convergence of the Luzin integral and its analogues. In: Сибирские электронные математические известия. 2019 ; Vol. 16. pp. 85-95.

BibTeX

@article{db8b4df7e0494d0ea7ec2e9e56f97872,
title = "On the convergence of the Luzin integral and its analogues",
abstract = "We study the convergence at a fixed point of the singular integral of Luzin and its analogues. We present sufficient conditions in terms of the Fourier coefficients of the given integrable function for such convergence.",
keywords = "Luzin integral, Trigonometric conjugate function, Trigonometric conjugate series",
author = "Knizhov, {Kirill Igorevich} and Podvigin, {Ivan Viktorovich}",
year = "2019",
month = jan,
day = "1",
doi = "10.33048/semi.2019.16.004",
language = "English",
volume = "16",
pages = "85--95",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - On the convergence of the Luzin integral and its analogues

AU - Knizhov, Kirill Igorevich

AU - Podvigin, Ivan Viktorovich

PY - 2019/1/1

Y1 - 2019/1/1

N2 - We study the convergence at a fixed point of the singular integral of Luzin and its analogues. We present sufficient conditions in terms of the Fourier coefficients of the given integrable function for such convergence.

AB - We study the convergence at a fixed point of the singular integral of Luzin and its analogues. We present sufficient conditions in terms of the Fourier coefficients of the given integrable function for such convergence.

KW - Luzin integral

KW - Trigonometric conjugate function

KW - Trigonometric conjugate series

UR - http://www.scopus.com/inward/record.url?scp=85066123255&partnerID=8YFLogxK

UR - https://www.elibrary.ru/item.asp?id=42735049

U2 - 10.33048/semi.2019.16.004

DO - 10.33048/semi.2019.16.004

M3 - Article

AN - SCOPUS:85066123255

VL - 16

SP - 85

EP - 95

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 20159916