Standard

On Rota-Baxter operators of non-zero weight arisen from the solutions of the classical Yang-Baxter equation. / Goncharov, Maxim.

In: Сибирские электронные математические известия, Vol. 14, 01.01.2017, p. 1533-1544.

Research output: Contribution to journalArticlepeer-review

Harvard

Goncharov, M 2017, 'On Rota-Baxter operators of non-zero weight arisen from the solutions of the classical Yang-Baxter equation', Сибирские электронные математические известия, vol. 14, pp. 1533-1544. https://doi.org/10.17377/semi.2017.14.132

APA

Goncharov, M. (2017). On Rota-Baxter operators of non-zero weight arisen from the solutions of the classical Yang-Baxter equation. Сибирские электронные математические известия, 14, 1533-1544. https://doi.org/10.17377/semi.2017.14.132

Vancouver

Goncharov M. On Rota-Baxter operators of non-zero weight arisen from the solutions of the classical Yang-Baxter equation. Сибирские электронные математические известия. 2017 Jan 1;14:1533-1544. doi: 10.17377/semi.2017.14.132

Author

Goncharov, Maxim. / On Rota-Baxter operators of non-zero weight arisen from the solutions of the classical Yang-Baxter equation. In: Сибирские электронные математические известия. 2017 ; Vol. 14. pp. 1533-1544.

BibTeX

@article{7e6b354665e242e484cf22f06f2d6ce8,
title = "On Rota-Baxter operators of non-zero weight arisen from the solutions of the classical Yang-Baxter equation",
abstract = "Let L be a simple anti-commutative algebra. In this paper we prove that a non skew-symmetric solution of the classical Yang- Baxter equation on L with L-invariant symmetric part induces on L a Rota-Baxter operator of a non-zero weight.",
keywords = "Anti-commutative algebra, Classical Yang-Baxter equation, Lie algebra, Malcev algebra, Non-associative bialgebra, Rota-Baxter operator, non-associative bialgebra, ALGEBRAS, classical Yang-Baxter equation, anti-commutative algebra, BIALGEBRAS",
author = "Maxim Goncharov",
year = "2017",
month = jan,
day = "1",
doi = "10.17377/semi.2017.14.132",
language = "English",
volume = "14",
pages = "1533--1544",
journal = "Сибирские электронные математические известия",
issn = "1813-3304",
publisher = "Sobolev Institute of Mathematics",

}

RIS

TY - JOUR

T1 - On Rota-Baxter operators of non-zero weight arisen from the solutions of the classical Yang-Baxter equation

AU - Goncharov, Maxim

PY - 2017/1/1

Y1 - 2017/1/1

N2 - Let L be a simple anti-commutative algebra. In this paper we prove that a non skew-symmetric solution of the classical Yang- Baxter equation on L with L-invariant symmetric part induces on L a Rota-Baxter operator of a non-zero weight.

AB - Let L be a simple anti-commutative algebra. In this paper we prove that a non skew-symmetric solution of the classical Yang- Baxter equation on L with L-invariant symmetric part induces on L a Rota-Baxter operator of a non-zero weight.

KW - Anti-commutative algebra

KW - Classical Yang-Baxter equation

KW - Lie algebra

KW - Malcev algebra

KW - Non-associative bialgebra

KW - Rota-Baxter operator

KW - non-associative bialgebra

KW - ALGEBRAS

KW - classical Yang-Baxter equation

KW - anti-commutative algebra

KW - BIALGEBRAS

UR - http://www.scopus.com/inward/record.url?scp=85051665070&partnerID=8YFLogxK

U2 - 10.17377/semi.2017.14.132

DO - 10.17377/semi.2017.14.132

M3 - Article

AN - SCOPUS:85051665070

VL - 14

SP - 1533

EP - 1544

JO - Сибирские электронные математические известия

JF - Сибирские электронные математические известия

SN - 1813-3304

ER -

ID: 22361396