Standard

On rank two algebro-geometric solutions of an integrable chain. / Mironov, Andrey E.; Mauleshova, Gulnara S.

Trends in Mathematics. Springer International Publishing AG, 2019. p. 189-195 (Trends in Mathematics).

Research output: Chapter in Book/Report/Conference proceedingChapterResearchpeer-review

Harvard

Mironov, AE & Mauleshova, GS 2019, On rank two algebro-geometric solutions of an integrable chain. in Trends in Mathematics. Trends in Mathematics, Springer International Publishing AG, pp. 189-195. https://doi.org/10.1007/978-3-030-01156-7_20

APA

Mironov, A. E., & Mauleshova, G. S. (2019). On rank two algebro-geometric solutions of an integrable chain. In Trends in Mathematics (pp. 189-195). (Trends in Mathematics). Springer International Publishing AG. https://doi.org/10.1007/978-3-030-01156-7_20

Vancouver

Mironov AE, Mauleshova GS. On rank two algebro-geometric solutions of an integrable chain. In Trends in Mathematics. Springer International Publishing AG. 2019. p. 189-195. (Trends in Mathematics). doi: 10.1007/978-3-030-01156-7_20

Author

Mironov, Andrey E. ; Mauleshova, Gulnara S. / On rank two algebro-geometric solutions of an integrable chain. Trends in Mathematics. Springer International Publishing AG, 2019. pp. 189-195 (Trends in Mathematics).

BibTeX

@inbook{74bac530d2c44bebaca5bf7724b0b0ad,
title = "On rank two algebro-geometric solutions of an integrable chain",
abstract = "In this paper we consider a differential-difference system which is equivalent to the commutativity condition of two differential-difference operators. We study the rank two algebro-geometric solutions of this system.",
keywords = "Algebro-geometric solutions, Differential-difference system, Lax representation",
author = "Mironov, {Andrey E.} and Mauleshova, {Gulnara S.}",
year = "2019",
month = jan,
day = "1",
doi = "10.1007/978-3-030-01156-7_20",
language = "English",
isbn = "978-3-030-01155-0",
series = "Trends in Mathematics",
publisher = "Springer International Publishing AG",
pages = "189--195",
booktitle = "Trends in Mathematics",
address = "Switzerland",

}

RIS

TY - CHAP

T1 - On rank two algebro-geometric solutions of an integrable chain

AU - Mironov, Andrey E.

AU - Mauleshova, Gulnara S.

PY - 2019/1/1

Y1 - 2019/1/1

N2 - In this paper we consider a differential-difference system which is equivalent to the commutativity condition of two differential-difference operators. We study the rank two algebro-geometric solutions of this system.

AB - In this paper we consider a differential-difference system which is equivalent to the commutativity condition of two differential-difference operators. We study the rank two algebro-geometric solutions of this system.

KW - Algebro-geometric solutions

KW - Differential-difference system

KW - Lax representation

UR - http://www.scopus.com/inward/record.url?scp=85063754925&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-01156-7_20

DO - 10.1007/978-3-030-01156-7_20

M3 - Chapter

AN - SCOPUS:85063754925

SN - 978-3-030-01155-0

T3 - Trends in Mathematics

SP - 189

EP - 195

BT - Trends in Mathematics

PB - Springer International Publishing AG

ER -

ID: 19354166