Standard

On groups whose element orders divide 6 and 7. / Guo, W.; Mamontov, A. S.

In: Siberian Mathematical Journal, Vol. 58, No. 1, 01.01.2017, p. 67-71.

Research output: Contribution to journalArticlepeer-review

Harvard

Guo, W & Mamontov, AS 2017, 'On groups whose element orders divide 6 and 7', Siberian Mathematical Journal, vol. 58, no. 1, pp. 67-71. https://doi.org/10.1134/S0037446617010098

APA

Vancouver

Guo W, Mamontov AS. On groups whose element orders divide 6 and 7. Siberian Mathematical Journal. 2017 Jan 1;58(1):67-71. doi: 10.1134/S0037446617010098

Author

Guo, W. ; Mamontov, A. S. / On groups whose element orders divide 6 and 7. In: Siberian Mathematical Journal. 2017 ; Vol. 58, No. 1. pp. 67-71.

BibTeX

@article{490334a2791f4bd7bfa380cfd7a72f45,
title = "On groups whose element orders divide 6 and 7",
abstract = "We prove that a group whose element orders divide 6 and 7 either is locally finite or an extension of a nontrivial elementary abelian 2-group by a group without involutions.",
keywords = "locally finite group, periodic group, spectrum",
author = "W. Guo and Mamontov, {A. S.}",
year = "2017",
month = jan,
day = "1",
doi = "10.1134/S0037446617010098",
language = "English",
volume = "58",
pages = "67--71",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "1",

}

RIS

TY - JOUR

T1 - On groups whose element orders divide 6 and 7

AU - Guo, W.

AU - Mamontov, A. S.

PY - 2017/1/1

Y1 - 2017/1/1

N2 - We prove that a group whose element orders divide 6 and 7 either is locally finite or an extension of a nontrivial elementary abelian 2-group by a group without involutions.

AB - We prove that a group whose element orders divide 6 and 7 either is locally finite or an extension of a nontrivial elementary abelian 2-group by a group without involutions.

KW - locally finite group

KW - periodic group

KW - spectrum

UR - http://www.scopus.com/inward/record.url?scp=85014713068&partnerID=8YFLogxK

U2 - 10.1134/S0037446617010098

DO - 10.1134/S0037446617010098

M3 - Article

AN - SCOPUS:85014713068

VL - 58

SP - 67

EP - 71

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 1

ER -

ID: 9048227