Standard

On Endomorphs of Right-Symmetric Algebras. / Pozhidaev, A. P.

In: Siberian Mathematical Journal, Vol. 61, No. 5, 01.09.2020, p. 859-866.

Research output: Contribution to journalArticlepeer-review

Harvard

Pozhidaev, AP 2020, 'On Endomorphs of Right-Symmetric Algebras', Siberian Mathematical Journal, vol. 61, no. 5, pp. 859-866. https://doi.org/10.1134/S0037446620050092

APA

Vancouver

Pozhidaev AP. On Endomorphs of Right-Symmetric Algebras. Siberian Mathematical Journal. 2020 Sept 1;61(5):859-866. doi: 10.1134/S0037446620050092

Author

Pozhidaev, A. P. / On Endomorphs of Right-Symmetric Algebras. In: Siberian Mathematical Journal. 2020 ; Vol. 61, No. 5. pp. 859-866.

BibTeX

@article{2d72f3aefe804cdabc2c326f9ed9af1a,
title = "On Endomorphs of Right-Symmetric Algebras",
abstract = "We introduce the notion of endomorph E(A) of a (super) algebra E(A) and prove thatE(A) is a simple (super) algebraif A is not an algebra of scalar multiplication.If A is a right-symmetric (super)algebra then E(A) is right-symmetric as well.Thus, we construct a wide class of simple(right-symmetric) (super)algebras which contains a matrix subalgebra with a common unity.We calculate the derivation algebra of the endomorphof a unital algebra A and the automorphism groupof the simple right-symmetric algebra E(Vn) (the endomorph of a direct sum of fields).",
keywords = "512.57, automorphism, derivation, endomorph, left-symmetric algebra, pre-Lie algebra, right-symmetric algebra, simple algebra",
author = "Pozhidaev, {A. P.}",
note = "Publisher Copyright: {\textcopyright} 2020, Pleiades Publishing, Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.",
year = "2020",
month = sep,
day = "1",
doi = "10.1134/S0037446620050092",
language = "English",
volume = "61",
pages = "859--866",
journal = "Siberian Mathematical Journal",
issn = "0037-4466",
publisher = "MAIK NAUKA/INTERPERIODICA/SPRINGER",
number = "5",

}

RIS

TY - JOUR

T1 - On Endomorphs of Right-Symmetric Algebras

AU - Pozhidaev, A. P.

N1 - Publisher Copyright: © 2020, Pleiades Publishing, Ltd. Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2020/9/1

Y1 - 2020/9/1

N2 - We introduce the notion of endomorph E(A) of a (super) algebra E(A) and prove thatE(A) is a simple (super) algebraif A is not an algebra of scalar multiplication.If A is a right-symmetric (super)algebra then E(A) is right-symmetric as well.Thus, we construct a wide class of simple(right-symmetric) (super)algebras which contains a matrix subalgebra with a common unity.We calculate the derivation algebra of the endomorphof a unital algebra A and the automorphism groupof the simple right-symmetric algebra E(Vn) (the endomorph of a direct sum of fields).

AB - We introduce the notion of endomorph E(A) of a (super) algebra E(A) and prove thatE(A) is a simple (super) algebraif A is not an algebra of scalar multiplication.If A is a right-symmetric (super)algebra then E(A) is right-symmetric as well.Thus, we construct a wide class of simple(right-symmetric) (super)algebras which contains a matrix subalgebra with a common unity.We calculate the derivation algebra of the endomorphof a unital algebra A and the automorphism groupof the simple right-symmetric algebra E(Vn) (the endomorph of a direct sum of fields).

KW - 512.57

KW - automorphism

KW - derivation

KW - endomorph

KW - left-symmetric algebra

KW - pre-Lie algebra

KW - right-symmetric algebra

KW - simple algebra

UR - http://www.scopus.com/inward/record.url?scp=85091635413&partnerID=8YFLogxK

U2 - 10.1134/S0037446620050092

DO - 10.1134/S0037446620050092

M3 - Article

AN - SCOPUS:85091635413

VL - 61

SP - 859

EP - 866

JO - Siberian Mathematical Journal

JF - Siberian Mathematical Journal

SN - 0037-4466

IS - 5

ER -

ID: 25688314