Standard
On Asymptotically Optimal Solvability of Euclidean Max m-k-Cycles Cover Problem. / Gimadi, Edward; Rykov, Ivan.
Recent Trends in Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Revised Supplementary Proceedings. ed. / Wil M. van der Aalst; Vladimir Batagelj; Alexey Buzmakov; Dmitry I. Ignatov; Anna Kalenkova; Michael Khachay; Olessia Koltsova; Andrey Kutuzov; Sergei O. Kuznetsov; Irina A. Lomazova; Natalia Loukachevitch; Ilya Makarov; Amedeo Napoli; Alexander Panchenko; Panos M. Pardalos; Marcello Pelillo; Andrey V. Savchenko; Elena Tutubalina. Springer Science and Business Media Deutschland GmbH, 2021. p. 257-266 (Communications in Computer and Information Science; Vol. 1357 CCIS).
Research output: Chapter in Book/Report/Conference proceeding › Conference contribution › Research › peer-review
Harvard
Gimadi, E & Rykov, I 2021,
On Asymptotically Optimal Solvability of Euclidean Max m-k-Cycles Cover Problem. in WM van der Aalst, V Batagelj, A Buzmakov, DI Ignatov, A Kalenkova, M Khachay, O Koltsova, A Kutuzov, SO Kuznetsov, IA Lomazova, N Loukachevitch, I Makarov, A Napoli, A Panchenko, PM Pardalos, M Pelillo, AV Savchenko & E Tutubalina (eds),
Recent Trends in Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Revised Supplementary Proceedings. Communications in Computer and Information Science, vol. 1357 CCIS, Springer Science and Business Media Deutschland GmbH, pp. 257-266, 9th International Conference on Analysis of Images, Social Networks, and Texts, AIST 2020, Virtual, Online,
15.10.2020.
https://doi.org/10.1007/978-3-030-71214-3_21
APA
Gimadi, E., & Rykov, I. (2021).
On Asymptotically Optimal Solvability of Euclidean Max m-k-Cycles Cover Problem. In W. M. van der Aalst, V. Batagelj, A. Buzmakov, D. I. Ignatov, A. Kalenkova, M. Khachay, O. Koltsova, A. Kutuzov, S. O. Kuznetsov, I. A. Lomazova, N. Loukachevitch, I. Makarov, A. Napoli, A. Panchenko, P. M. Pardalos, M. Pelillo, A. V. Savchenko, & E. Tutubalina (Eds.),
Recent Trends in Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Revised Supplementary Proceedings (pp. 257-266). (Communications in Computer and Information Science; Vol. 1357 CCIS). Springer Science and Business Media Deutschland GmbH.
https://doi.org/10.1007/978-3-030-71214-3_21
Vancouver
Gimadi E, Rykov I.
On Asymptotically Optimal Solvability of Euclidean Max m-k-Cycles Cover Problem. In van der Aalst WM, Batagelj V, Buzmakov A, Ignatov DI, Kalenkova A, Khachay M, Koltsova O, Kutuzov A, Kuznetsov SO, Lomazova IA, Loukachevitch N, Makarov I, Napoli A, Panchenko A, Pardalos PM, Pelillo M, Savchenko AV, Tutubalina E, editors, Recent Trends in Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Revised Supplementary Proceedings. Springer Science and Business Media Deutschland GmbH. 2021. p. 257-266. (Communications in Computer and Information Science). doi: 10.1007/978-3-030-71214-3_21
Author
Gimadi, Edward ; Rykov, Ivan. /
On Asymptotically Optimal Solvability of Euclidean Max m-k-Cycles Cover Problem. Recent Trends in Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Revised Supplementary Proceedings. editor / Wil M. van der Aalst ; Vladimir Batagelj ; Alexey Buzmakov ; Dmitry I. Ignatov ; Anna Kalenkova ; Michael Khachay ; Olessia Koltsova ; Andrey Kutuzov ; Sergei O. Kuznetsov ; Irina A. Lomazova ; Natalia Loukachevitch ; Ilya Makarov ; Amedeo Napoli ; Alexander Panchenko ; Panos M. Pardalos ; Marcello Pelillo ; Andrey V. Savchenko ; Elena Tutubalina. Springer Science and Business Media Deutschland GmbH, 2021. pp. 257-266 (Communications in Computer and Information Science).
BibTeX
@inproceedings{ee907c5ed1e841528b7d33b63320d6d5,
title = "On Asymptotically Optimal Solvability of Euclidean Max m-k-Cycles Cover Problem",
abstract = "We consider the problem of finding m edge-disjoint k-cycles covers formulated in d-dimensional Euclidean space. We construct a polynomial-time approximation algorithm for this problem and derive conditions of its asymptotical optimality.",
keywords = "Asymptotically optimal, Cycles covering, m-TSP",
author = "Edward Gimadi and Ivan Rykov",
note = "Funding Information: The work was supported by the program of fundamental scientific researches of the SB RAS, project No 0314-2019-0014. Publisher Copyright: {\textcopyright} 2021, Springer Nature Switzerland AG.; 9th International Conference on Analysis of Images, Social Networks, and Texts, AIST 2020 ; Conference date: 15-10-2020 Through 16-10-2020",
year = "2021",
doi = "10.1007/978-3-030-71214-3_21",
language = "English",
isbn = "9783030712136",
series = "Communications in Computer and Information Science",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "257--266",
editor = "{van der Aalst}, {Wil M.} and Vladimir Batagelj and Alexey Buzmakov and Ignatov, {Dmitry I.} and Anna Kalenkova and Michael Khachay and Olessia Koltsova and Andrey Kutuzov and Kuznetsov, {Sergei O.} and Lomazova, {Irina A.} and Natalia Loukachevitch and Ilya Makarov and Amedeo Napoli and Alexander Panchenko and Pardalos, {Panos M.} and Marcello Pelillo and Savchenko, {Andrey V.} and Elena Tutubalina",
booktitle = "Recent Trends in Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Revised Supplementary Proceedings",
address = "Germany",
}
RIS
TY - GEN
T1 - On Asymptotically Optimal Solvability of Euclidean Max m-k-Cycles Cover Problem
AU - Gimadi, Edward
AU - Rykov, Ivan
N1 - Funding Information:
The work was supported by the program of fundamental scientific researches of the SB RAS, project No 0314-2019-0014.
Publisher Copyright:
© 2021, Springer Nature Switzerland AG.
PY - 2021
Y1 - 2021
N2 - We consider the problem of finding m edge-disjoint k-cycles covers formulated in d-dimensional Euclidean space. We construct a polynomial-time approximation algorithm for this problem and derive conditions of its asymptotical optimality.
AB - We consider the problem of finding m edge-disjoint k-cycles covers formulated in d-dimensional Euclidean space. We construct a polynomial-time approximation algorithm for this problem and derive conditions of its asymptotical optimality.
KW - Asymptotically optimal
KW - Cycles covering
KW - m-TSP
UR - http://www.scopus.com/inward/record.url?scp=85107361206&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-71214-3_21
DO - 10.1007/978-3-030-71214-3_21
M3 - Conference contribution
AN - SCOPUS:85107361206
SN - 9783030712136
T3 - Communications in Computer and Information Science
SP - 257
EP - 266
BT - Recent Trends in Analysis of Images, Social Networks and Texts - 9th International Conference, AIST 2020, Revised Supplementary Proceedings
A2 - van der Aalst, Wil M.
A2 - Batagelj, Vladimir
A2 - Buzmakov, Alexey
A2 - Ignatov, Dmitry I.
A2 - Kalenkova, Anna
A2 - Khachay, Michael
A2 - Koltsova, Olessia
A2 - Kutuzov, Andrey
A2 - Kuznetsov, Sergei O.
A2 - Lomazova, Irina A.
A2 - Loukachevitch, Natalia
A2 - Makarov, Ilya
A2 - Napoli, Amedeo
A2 - Panchenko, Alexander
A2 - Pardalos, Panos M.
A2 - Pelillo, Marcello
A2 - Savchenko, Andrey V.
A2 - Tutubalina, Elena
PB - Springer Science and Business Media Deutschland GmbH
T2 - 9th International Conference on Analysis of Images, Social Networks, and Texts, AIST 2020
Y2 - 15 October 2020 through 16 October 2020
ER -