Research output: Contribution to journal › Article › peer-review
On a stochastic process with switchings. / Lotov, Vladimir Ivanovich; Xodjibayev, Vali Raximdjanovich.
In: Сибирские электронные математические известия, Vol. 16, 01.01.2019, p. 1531-1546.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On a stochastic process with switchings
AU - Lotov, Vladimir Ivanovich
AU - Xodjibayev, Vali Raximdjanovich
N1 - Лотов В.И., Ходжибаев В.Р. О случайном процессе с переключениями // Сибирские электронные математические известия. - 2019. - Т. 16. - С. 1531–1546
PY - 2019/1/1
Y1 - 2019/1/1
N2 - We study a stochastic process X(t) with switchings between two stationary processes with independent increments while achieving regulatory barriers. We obtain the dual Laplace-Stieltjes transform of the distribution of the process X(t) and its limit as t ! 1. Under Cramer's type conditions, the asymptotic representations of these transforms are obtained when the width of the regulating strip is growing. We use known results for regenerative processes and factorization technique for the study in boundary crossing problems for stochastic processes.
AB - We study a stochastic process X(t) with switchings between two stationary processes with independent increments while achieving regulatory barriers. We obtain the dual Laplace-Stieltjes transform of the distribution of the process X(t) and its limit as t ! 1. Under Cramer's type conditions, the asymptotic representations of these transforms are obtained when the width of the regulating strip is growing. We use known results for regenerative processes and factorization technique for the study in boundary crossing problems for stochastic processes.
KW - oscillating stochastic process
KW - stationary process with independent increments
KW - regenerative process
KW - stationary distribution
KW - factorization method
KW - Factorization method
KW - Oscillating stochastic process
KW - Regenerative process
KW - Stationary distribution
KW - Stationary process with independent increments
UR - http://www.scopus.com/inward/record.url?scp=85081265916&partnerID=8YFLogxK
UR - https://www.elibrary.ru/item.asp?id=42735147
U2 - 10.33048/semi.2019.16.104
DO - 10.33048/semi.2019.16.104
M3 - Article
VL - 16
SP - 1531
EP - 1546
JO - Сибирские электронные математические известия
JF - Сибирские электронные математические известия
SN - 1813-3304
ER -
ID: 23713746