Research output: Contribution to journal › Article › peer-review
On a class of nonlocal evolution equations with the p[u(x,t)]-Laplace operator. / Antontsev, Stanislav; Shmarev, Sergey.
In: Nonlinear Analysis: Real World Applications, Vol. 56, 103165, 01.12.2020.Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - On a class of nonlocal evolution equations with the p[u(x,t)]-Laplace operator
AU - Antontsev, Stanislav
AU - Shmarev, Sergey
PY - 2020/12/1
Y1 - 2020/12/1
N2 - We study the homogeneous Dirichlet problem for a class of nonlocal singular parabolic equations ut−div|∇u|p[u]−2∇u=fin Ω×(0,T),where Ω⊂Rd, d≥2, is a smooth bounded domain, p[u]=p(l(u)) is a given function with values in the interval [p−,p+]⊂(1,2), and l(u)=∫Ω|u(x,t)|αdx, α∈[1,2], is a functional of the unknown solution. We find sufficient conditions for global or local in time solvability of the problem, prove the uniqueness, and show that every solution gets extinct in a finite time.
AB - We study the homogeneous Dirichlet problem for a class of nonlocal singular parabolic equations ut−div|∇u|p[u]−2∇u=fin Ω×(0,T),where Ω⊂Rd, d≥2, is a smooth bounded domain, p[u]=p(l(u)) is a given function with values in the interval [p−,p+]⊂(1,2), and l(u)=∫Ω|u(x,t)|αdx, α∈[1,2], is a functional of the unknown solution. We find sufficient conditions for global or local in time solvability of the problem, prove the uniqueness, and show that every solution gets extinct in a finite time.
KW - Nonlocal equation
KW - Singular parabolic equation
KW - Strong solutions
KW - Variable nonlinearity
KW - P(U)-LAPLACIAN
KW - VARIABLE EXPONENT
KW - UNIQUENESS
UR - http://www.scopus.com/inward/record.url?scp=85085732253&partnerID=8YFLogxK
U2 - 10.1016/j.nonrwa.2020.103165
DO - 10.1016/j.nonrwa.2020.103165
M3 - Article
AN - SCOPUS:85085732253
VL - 56
JO - Nonlinear Analysis: Real World Applications
JF - Nonlinear Analysis: Real World Applications
SN - 1468-1218
M1 - 103165
ER -
ID: 24411634