Standard

Numerical study of viscous effects on centreline shock reflection in axisymmetric flow. / Shoev, G.; Ogawa, H.

In: Physics of Fluids, Vol. 31, No. 2, 026105, 01.02.2019.

Research output: Contribution to journalArticlepeer-review

Harvard

APA

Vancouver

Shoev G, Ogawa H. Numerical study of viscous effects on centreline shock reflection in axisymmetric flow. Physics of Fluids. 2019 Feb 1;31(2):026105. doi: 10.1063/1.5085267

Author

Shoev, G. ; Ogawa, H. / Numerical study of viscous effects on centreline shock reflection in axisymmetric flow. In: Physics of Fluids. 2019 ; Vol. 31, No. 2.

BibTeX

@article{c37c63204c3642808348c44602d48b77,
title = "Numerical study of viscous effects on centreline shock reflection in axisymmetric flow",
abstract = "Viscous effects on centreline shock reflection in an axisymmetric flow are studied numerically using Navier-Stokes and direct simulation Monte Carlo solvers. Computations at low Reynolds numbers have resulted in a configuration consisting of two shock waves, in contrast to the inviscid theory. On the other hand, computations at high Reynolds numbers have yielded a three-shock configuration in qualitative agreement with the inviscid theory prediction. This behaviour is explained by the presence of the so-called non-Rankine-Hugoniot zone, which accounts for the deviation of the shock structure from the inviscid paradigm. At Reynolds numbers on the verge of the transition from a two-shock to three-shock configuration, extremely high pressure that would be unattainable with the classical Rankine-Hugoniot relation for any shock configuration may occur. An analogy to the Guderley singularity in cylindrical shock implosion has been deduced for the shock behaviour from a mathematical viewpoint.",
keywords = "MACH REFLECTION, STATIONARY REFLECTION, STEADY FLOWS, TRANSITION, WAVES, SIMULATION, VISCOSITY, CONTINUUM, PARADOX, AXIS",
author = "G. Shoev and H. Ogawa",
note = "Publisher Copyright: {\textcopyright} 2019 Author(s).",
year = "2019",
month = feb,
day = "1",
doi = "10.1063/1.5085267",
language = "English",
volume = "31",
journal = "Physics of Fluids",
issn = "1070-6631",
publisher = "American Institute of Physics",
number = "2",

}

RIS

TY - JOUR

T1 - Numerical study of viscous effects on centreline shock reflection in axisymmetric flow

AU - Shoev, G.

AU - Ogawa, H.

N1 - Publisher Copyright: © 2019 Author(s).

PY - 2019/2/1

Y1 - 2019/2/1

N2 - Viscous effects on centreline shock reflection in an axisymmetric flow are studied numerically using Navier-Stokes and direct simulation Monte Carlo solvers. Computations at low Reynolds numbers have resulted in a configuration consisting of two shock waves, in contrast to the inviscid theory. On the other hand, computations at high Reynolds numbers have yielded a three-shock configuration in qualitative agreement with the inviscid theory prediction. This behaviour is explained by the presence of the so-called non-Rankine-Hugoniot zone, which accounts for the deviation of the shock structure from the inviscid paradigm. At Reynolds numbers on the verge of the transition from a two-shock to three-shock configuration, extremely high pressure that would be unattainable with the classical Rankine-Hugoniot relation for any shock configuration may occur. An analogy to the Guderley singularity in cylindrical shock implosion has been deduced for the shock behaviour from a mathematical viewpoint.

AB - Viscous effects on centreline shock reflection in an axisymmetric flow are studied numerically using Navier-Stokes and direct simulation Monte Carlo solvers. Computations at low Reynolds numbers have resulted in a configuration consisting of two shock waves, in contrast to the inviscid theory. On the other hand, computations at high Reynolds numbers have yielded a three-shock configuration in qualitative agreement with the inviscid theory prediction. This behaviour is explained by the presence of the so-called non-Rankine-Hugoniot zone, which accounts for the deviation of the shock structure from the inviscid paradigm. At Reynolds numbers on the verge of the transition from a two-shock to three-shock configuration, extremely high pressure that would be unattainable with the classical Rankine-Hugoniot relation for any shock configuration may occur. An analogy to the Guderley singularity in cylindrical shock implosion has been deduced for the shock behaviour from a mathematical viewpoint.

KW - MACH REFLECTION

KW - STATIONARY REFLECTION

KW - STEADY FLOWS

KW - TRANSITION

KW - WAVES

KW - SIMULATION

KW - VISCOSITY

KW - CONTINUUM

KW - PARADOX

KW - AXIS

UR - http://www.scopus.com/inward/record.url?scp=85061659679&partnerID=8YFLogxK

U2 - 10.1063/1.5085267

DO - 10.1063/1.5085267

M3 - Article

AN - SCOPUS:85061659679

VL - 31

JO - Physics of Fluids

JF - Physics of Fluids

SN - 1070-6631

IS - 2

M1 - 026105

ER -

ID: 18561750